
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

1

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 171

Reading:

• Class Handout: Frequency-Sampling Filters.

• Proakis and Manolakis: Secs. 10.2.3, 10.2.4

• Oppenheim, Schafer and Buck: 7.4

• Cartinhour: Ch. 9

Frequency-Sampling Filters

In the frequency-sampling filters the parameters that characterize the the filter are the
values of the desired frequency response H(ejω) at a discrete set of equally spaced sampling
frequencies. In particular, let

2π
ωk = k k = 0, . . . , N − 1 (1)

N

as shown below for the cases of N even, and N odd. Note that when N is odd there is
no sample at the Nyquist frequency, ω = π. The frequency-sampling method guarantees
that the resulting filter design will meet the given design specification at each of the sample
frequencies.

�� � �� �

� � � � �

� 	 � � �

� �
��
�

� � � �
� � � �

� �
 � � 	

� 	 � � �

� �
 � � 	
� � � � �

� � � � � � � � 	 � 	 �
� � � � � � � � � � � �

� � � � � �
1copyright c© D.Rowell 2008

17–1

{

∑

For convenience denote the complete sample set {Hk} as

Hk = H(ejωk) k = 1, . . . , N − 1.

For a filter with a real impulse response {hn} we require conjugate symmetry, that is

¯HN−k = Hk

and further, for a filter with a real, even impulse response we require {Hk} to be real and
even, that is

HN−k = Hk.

Within these constraints, it is sufficient to specify frequency samples for the upper half of
the z-plane, that is for

2π k = 0, . . . , N
2
−1 N odd

ωk = k NN k = 0, . . . ,
2 N even.

and use the symmetry constraints to determine the other samples.
If we assume that H(ejω) may be recovered from the complete sample set {Hk} by the

cardinal sinc interpolation method, that is

N−1

H(ejω) =
∑

Hk
sin (ω − 2πk/N)

ω − 2πk/N
k=0

then H(ejω) is completely specified by its sample set, and the impulse response, of length
N , may be found directly from the inverse DFT,

{hn} = IDFT {Hk}

where
N−1

1 j 2πkn
hn = Hke N n = 0, . . . , N − 1

N
k=0

As mentioned above, this method guarantees that the resulting FIR filter, represented by
{hn}, will meet the specification H(ejω) = Hk at ω = ωk = 2kπ/N . Between the given
sampling frequencies the response H(ejω) will be described by the cardinal interpolation.

1.1 Linear-Phase Frequency-Sampling Filter

The filter described above is finite, with length N , but is non-causal. To create a causal filter
with a linear phase characteristic we require an impulse response that is real and symmetric
about its mid-point. This can be done by shifting the computed impulse response to the
right by (N − 1)/2 samples to form

H ′(z) = z −(N−1)/2H(z)

but this involves a non-integer shift for even N . Instead, it is more convenient to add the
appropriate phase taper to the frequency domain samples Hk before taking the IDFT. The
non-integer delay then poses no problems:

17–2

{

{

• Apply a phase shift of
πk(N − 1)

φk = − (2)
N

to each of the samples in the upper half z-plane

H ′ jφk
k = 0, . . . , (N − 1)/2 (for n odd)

= Hkek k = 0, . . . , N/2 (for n even)

• Force the lower half plane samples to be complex conjugates.

H ′ H̄ ′ k = 1, . . . , (N − 1)/2 (for n odd)
= N−k k k = 1, . . . , N/2 − 1 (for n even)

• Then the linear-phase impulse response is

{hn} = IDFT {H ′ }k

1.2 A Simple MATLAB Frequency-Sampling Filter

The following is a MATLAB script of a tutorial frequency-sampling filter
h = firfs(samples)

that takes a vector samples of length N of the desired frequency response in the range
0 ≤ ω ≤ (N − 1)π/N , and returns the linear-phase impulse response {hn} of length 2N − 1.

% 2.161 Classroom Example - firfs - A simple Frequency-Sampling Linear-Phase FIR

% Filter based on DFT interpolation.

% Usage : h = firfs(samples)

% where samples - is a row vector of M equi-spaced, real values

% of the freq. response magnitude.

% The samples are interpreted as being equally spaced around

% the top half of the unit circle at normalized (in terms of

% the Nyquist frequency f_N) frequencies from

% 0 to 2(M-1)/(2M-1) x f_N,

% or at frequencies 2k/(2N-1)xf_N for k = 0...M-1

% Note: Because the length is odd, the frequency response

% is not specified at f_N.

% h - is the output impulse response of length 2M-1 (odd).

% The filter h is real, and has linear phase, i.e. has symmetric

% coefficients obeying h(k) = h(2M+1-k), k = 1,2,...,M+1.

%--

function h = firfs(samples)

%

% Find the length of the input array...

% The complete sample set on the unit circle will be of length (2N-1)

17–3

%
N = 2*length(samples) -1;
H_d = zeros(1,N);
%
% We want a causal filter, so the resulting impulse response will be shifted
% (N-1)/2 to the right.
% Move the samples into the upper and lower halves of H_d and add the
% linear phase shift term to each sample.
%
Phi = pi*(N-1)/N;
H_d(1) = samples(1);
for j = 2:N/2-1

Phase = exp(-i*(j-1)*Phi);
H_d(j) = samples(j)*Phase;
H_d(N+2-j) = samples(j)*conj(Phase);

end
%
% Use the inverse DFT to define the impulse response.
%
h = real(ifft(H_d));

The following MATLAB commands were used to generate a filter with 22 frequency samples,
generating a length 43 filter.

h=firfs([1 1 1 1 0.4 0 0 0 0 0.8 2 2 2 2 0.8 0 0 0 0 0 0 0]);
freqz(h,1)

The filter has two pass-bands; a low-pass region with a gain of unity, and a band-pass region
with a gain of two. Notice that the band-edges have been specified with transition samples,
this is discussed further below. The above commands produced the following frequency
response for the filter.

0

M
ag

ni
tu

de
 (

dB
)

−20

−40

−60

−80
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (π rad/sample)

0

P
ha

se
 (

de
gr

ee
s) −500

−1000

−1500

−2000
0	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (π rad/sample)

17–4

1.3 The Effect of Band-Edge Transition Samples

One of the advantages of the frequency-sampling filter is that the band-edges may be more
precisely specified than the window method. For example, low-pass filters might be specified
by

h = firfs([1 1 1 1 1 0.4 0 0 0 0 0 0]);
with one transition value of 0.4, or

h = firfs([1 1 1 1 0.7 0.2 0 0 0 0 0 0]);
with a pair of transition specifications. The frequency-sampling filter characteristic will pass
through these points, and they can have a significant effect on the stop-band characteristics
of the filter.

The figure below shows the effect of varying the value of a single transition point in a
filter of length N = 33.

−80

−70

−60

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

t = 0.6
t = 0.4
t = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency f/F

N

The values shown are for t = 0.6, 0.4 and 0.2. There is clearly a significant improvement in
the stop-band attenuation for for the case t = 0.4.

Similarly the following figure compares the best of these single transition values (t = 0.4)
with a the response using two transition points (t1 = 0.59, t2 = 0.11). The filter using two
transition points shows a significant improvement in the stop-band over the single point case,
at the expense of the transition width.

−80

−70

−60

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

t1 = .59, t2 = 0.11
t = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency f/f

N

17–5

� �

� � �
�

� � � �

�

� �
�

2

Rabiner et al. (1970) did an extensive linear-programming optimization study to deter
mine the optimum value of band edge transition values, and tabulated the results for even
and odd filters of different lengths. The results show that for one transition point topt ≈ 0.4,
and for two points topt ≈ 0.59, and 0.11.

FIR Filter Design Using Optimization

These methods allow much greater flexibility in the filter specification. In general they seek
the filter coefficients that minimize the error (in some sense) between a desired frequency
response Hd(ej ω) and the achieved frequency response H(ej ω). The most common optimiza
tion method is that due to Parks and McClellan (1972) and is widely available in software
filter design packages (including MATLAB).

The Parks-McClellan method allows

•	 Multiple pass- and stop-bands.

•	 Is an equi-ripple design in the pass- and stop-bands, but allows independent weighting
of the ripple in each band.

•	 Allows specification of the band edges.

 � � � � � � �	 � � �
 � � � �

	 � � � � � �

 � 	

� �
	

	 � � � � � �

 � 	 � � � � � � � �

For the low-pass filter shown above the specification would be

1 − δ1 < H(ej ω) < 1 + δ1 in the pass-band 0 < ω ≤ ωc

−δ2 < H(ej ω) < δ2 in the stop-band ωs < ω ≤ π.

where the ripple amplitudes δ1 and δ2 need not be equal. Given these specifications we need
to determine, the length of the filter M + 1 and the filter coefficients {hn} that meet the
specifications in some optimal sense.

If M + 1 is odd, and we assume even symmetry

hM−k = hk k = 0 . . . M/2

17–6

∑

∑

()

[] [] ∣ ∣ ∣	 ∣ ∣ ∣	 ∣
∣	 ∣
∣	 ∣

∑

∑ ∑

and the frequency response function can be written

M/2

H(ej ω) = h0 + 2 hk cos(ωk)
k=1

M/2

= ak cos(ωk)
k=0

Let Hd(ej ω) be the desired frequency response, and define a weighted error

E(ej ω) = W (ej ω) Hd(ej ω) − H(ej ω)

where W (ej ω) is a frequency dependent weighting function, but by convention let W (ej ω)
be constant across each of the critical bands, and zero in all transition bands. In particular
for the low-pass design

⎧ ⎪δ2/δ1 in the pass-band ⎨
W (ej ω) = 1 in the stop-band ⎪ ⎩

0 in the transition band.

This states that the optimization will control the ratio of the pass-band to stop-band ripple,
and that the transition will not contribute to the error criterion.

Let Ω be a compact subset of the frequency band from 0 to π representing the pass- and
stop-bands. The goal is to find the set of filter parameters {ak}, k = 0, . . . , M/2 + 1 that
minimize the maximum value of the error E(ej ω) over the pass- and stop-bands.

⎡ ⎡ ⎛	 ⎞ ⎤⎤ ∣	 M/2 ∣
⎣ ⎣	 ⎠ ⎦⎦min max ∣E(ej ω) = min max W (ej ω) ⎝Hd(ej ω) − ak cos(ωk)

over ak over Ω	 over ak over Ω ∣	 k=0 ∣
where Ω is the disjoint set of frequency bands that make up the pass- and stop-bands of
the filter.

The solution is found by an iterative optimization routine. We do not attempt to cover the
details of the algorithm here, and merely note:

•	 The method is based on reformulating the problem as one in polynomial approximation,
using Chebyshev polynomials, where

cos(ωk) = Tk(cos(ω))

where Tk(x) is a polynomial of degree k, (see the Class Handout on Chebyshev filter
design). Consequently

M/2 M/2

H(ej ω) = ak cos(ωk) = ak
′ (cos(ω))k

k=0 k=0

17–7

()

∣ ∣ ∣

()

� �

� � �
�

� � � �

�

�
 �

∑

•	 The algorithm uses Chebyshev’s alternation theorem to recognize the optimal solution.
In general terms the theorem is stated:

Define the error E(x) as above, namely

E(ej ω) = W (ej ω) Hd(ej ω) − H(ej ω)

and the maximum error as

‖E(ej ω)‖∞ = argmaxx∈Ω
∣E(ej ω)

A necessary and sufficient condition that H(ej ω) is the unique Lth-order
polynomial minimizing ‖E(ej ω)‖∞ is that E(ej ω) exhibit at least L + 2
extremal frequencies, or “alternations”, that is there must exist at least L+2
values of ω, ωk ∈ Ω, k = [0, 1, . . . , L + 1], such that ω0 < ω1 < . . . < ωL+1,
and such that

E(ej ωk) = −E(ej ωk+1) = ± ‖E(ej ω)‖∞ .

Note that the alternation theorem is simply a way of recognizing the optimal equi
ripple solution. For example, the following figure is from a Parks-McClellan low-pass
filter with length M + 1 = 17.

 � � � � � � � � � �
 � � � �

� � � � � � � �

� � � 	 � � � � � � � � 	 � � 	 � � 	 �

� � � � �� � � �	�

� 	 �

	 �

From above, H(ej ω) is written as a polynomial of degree M/2,

M/2

H(ej ω) = ak
′ (cos(ω))k

k=0

so that L = M/2 and the pass- and stop-bands must exhibit at least M/2 + 2 = 10
points of alternation. These 10 points are shown in the figure.

•	 The Parks-McClellan algoritm uses the Remez exchange optimization method.

17–8

�

� � �
 � � �

 � � � � �

See Proakis and Manolakis Sec. 10.2.4 or Openheim, Schafer and Buck Sec. 7.4 for details.

MATLAB Parks-McClellan Function: The Parks-McClellan algorithm is implemented
in the MATLAB function

b = firpm(M,F,A,W)

where b is the array of filter coefficients, M is the filter order (M+1 is the length of the filter),
F is a vector of band edge frequencies in ascending order, A is a set of filter gains at the band
edges, and W is an optional set of relative weights to be applied to each of the bands.

For example, consider a band-pass filter with two pass-bands as shown below:

� � � � � � � � �� �� � � � � � �

� � �
 � � �
 � � �

 � � �

 � � �

�

� � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � �� �
�

There are five distinct bands in this filter, separated by four transition regions. The filter
would require the following specifications:

F = [0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 1]

A = [0 0 1 1 0 0 0.7 0.7 0 0]

W = [10 1 10 1 10]

where the errors in the stop-bands have been weighted 10 times more heavily than in the
pass-bands. See the MATLAB help/documentation for more details.

Example 1

Design a length 33 Parks-McClellan band-pass filter with the following band
specifications:

�
�
� � � � � � � �

� � � � � � ! � � � � � � � " # � �
�

� � � � � � � � � � � � � � � �

17–9

Weight the stop-band ripple ten times more heavily than the pass-band.

Solution:

h=firpm(32,[0 0.2 0.4 0.7 0.85 1],[0 0 10 10 0 0],[10 1 10])
freqz(h,1)

0 0 . 2 0 . 4 0 . 6 0 . 8 1- 1 5 0 0
- 1 0 0 0
- 5 0 0

0
5 0 0

1 0 0 0

N o r m a l i z e d F r e q u e n c y (r a d / s a m p l e)

Ph
as

e (
de

gre
es

)

0 0 . 2 0 . 4 0 . 6 0 . 8 1- 1 0 0

- 5 0

0

5 0

N o r m a l i z e d F r e q u e n c y (r a d / s a m p l e)

Ma
gn

itu
de

 (d
B)

x p

x p

17–10

