MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology
 Department of Mechanical Engineering
 2.161 Signal Processing - Continuous and Discrete
 Fall Term 2008

Lecture $\mathbf{1 4}^{1}$

Reading:

- Proakis \& Manolakis, Chapter 3 (The z-transform)
- Oppenheim, Schafer \& Buck, Chapter 3 (The z-transform)

1 The Discrete-Time Transfer Function

Consider the discrete-time LTI system, characterized by its pulse response $\left\{h_{n}\right\}$:
convolution

We saw in Lec. 13 that the output to an input sequence $\left\{f_{n}\right\}$ is given by the convolution sum:

$$
y_{n}=f_{n} \otimes h_{n}=\sum_{k=-\infty}^{\infty} f_{k} h_{n-k}=\sum_{k=-\infty}^{\infty} h_{k} f_{n-k}
$$

where $\left\{h_{n}\right\}$ is the pulse response. Using the convolution property of the z-transform we have at the output

$$
Y(z)=F(z) H(z)
$$

where $F(z)=\mathcal{Z}\left\{f_{n}\right\}$, and $H(z)=\mathcal{Z}\left\{h_{n}\right\}$. Then

$$
H(z)=\frac{Y(z)}{F(z)}
$$

is the discrete-time transfer function, and serves the same role in the design and analysis of discrete-time systems as the Laplace based transfer function $H(s)$ does in continuous systems.

[^0]In general, for LTI systems the transfer function will be a rational function of z, and may be written in terms of z or z^{-1}, for example

$$
H(z)=\frac{N(s)}{D(s)}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{N} z^{-N}}
$$

where the $b_{i}, \quad i=0, \ldots, m, a_{i}, \quad i=0, \ldots, n$ are constant coefficients.

2 The Transfer Function and the Difference Equation

As defined above, let

$$
H(z)=\frac{Y(z)}{F(z)}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{N} z^{-N}}
$$

and rewrite as

$$
\left(a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{N} z^{-N}\right) Y(z)=\left(b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{M} z^{-M}\right) F(z)
$$

If we apply the z-transform time-shift property

$$
Z\left\{f_{n-k}\right\}=z^{-k} F(z)
$$

term-by-term on both sides of the equation, (effectively taking the inverse z-transform)

$$
a_{0} y_{n}+a_{1} y_{n-1}+a_{2} y_{n-2}+\ldots+a_{N} y_{n-N}=b_{0} f_{n}+b_{1} f_{n-1}+b_{2} f_{n-2}+\ldots+b_{M} f_{n-M}
$$

and solve for y_{n}

$$
\begin{aligned}
y_{n} & =-\frac{1}{a_{0}}\left(a_{1} y_{n-1}+a_{2} y_{n-2}+\ldots+a_{N} y_{n-N}\right)+\frac{1}{a_{0}}\left(b_{0} f_{n}+b_{1} f_{n-1}+b_{2} f_{n-2}+\ldots+b_{M} f_{n-M}\right) \\
& =\sum_{i=1}^{N}\left(\frac{-a_{i}}{a_{0}}\right) y_{n-i}+\sum_{i=0}^{M}\left(\frac{b_{i}}{a_{0}}\right) f_{n-i}
\end{aligned}
$$

which is in the form of a recursive linear difference equation as discussed in Lecture 13.
The transfer function $H(z)$ directly defines the computational difference equation used to implement a LTI system.

■ Example 1

Find the difference equation to implement a causal LTI system with a transfer function

$$
H(z)=\frac{\left(1-2 z^{-1}\right)\left(1-4 z^{-1}\right)}{z\left(1-\frac{1}{2} z^{-1}\right)}
$$

Solution:

$$
H(z)=\frac{z^{-1}-6 z^{-2}+8 z^{-3}}{1-\frac{1}{2} z^{-1}}
$$

from which

$$
y_{n}-\frac{1}{2} y_{n-1}=f_{n-1}-6 f_{n-2}+8 f_{n-3}
$$

or

$$
y_{n}=\frac{1}{2} y_{n-1}+\left(f_{n-1}-6 f_{n-2}+8 f_{n-3}\right)
$$

The reverse holds as well: if we are given the difference equation, we can define the system transfer function.

Example 2

Find the transfer function (expressed in powers of z) for the difference equation

$$
y_{n}=0.25 y_{n-2}+3 f_{n}-3 f_{n-1}
$$

and plot the system poles and zeros on the z-plane.
Solution: Taking the z-transform of both sides

$$
Y(z)=0.25 z^{-2} Y(z)+3 F(z)-3 z^{-1} F(z)
$$

and reorganizing

$$
H(z)=\frac{Y(z)}{F(z)}=\frac{3\left(1-z^{-1}\right)}{1-0.25 z^{-2}}=\frac{3 z(z-1)}{z^{2}-0.25}
$$

which has zeros at $z=0,1$ and poles at $z=-0.5,0.5$:

3 Introduction to z-plane Stability Criteria

The stability of continuous time systems is governed by pole locations - for a system to be BIBO stable all poles must lie in the l.h. s-plane. Here we do a preliminary investigation of stability of discrete-time systems, based on z-plane pole locations of $H(z)$.

Consider the pulse response h_{n} of the causal system with

$$
H(z)=\frac{z}{z-a}=\frac{1}{1-a z^{-1}}
$$

with a single real pole at $z=a$ and with a difference equation

Clearly the pulse response is

$$
h_{n}= \begin{cases}1 & n=0 \\ a^{n} & n \geq 1\end{cases}
$$

The nature of the pulse response will depend on the pole location:
$0<a<1$: In this case $h_{n}=a^{n}$ will be a decreasing function of n and $\lim _{n \rightarrow \infty} h_{n}=0$ and the system is stable.
$a=1$: The difference equation is $y_{n}=y_{n-1}+f_{n}$ (the system is a summer and the impulse response is $h_{n}=1$, (non-decaying). The system is marginally stable.
$a>1$: In this case $h_{n}=a^{n}$ will be a increasing function of n and $\lim _{n \rightarrow \infty} h_{n}=\infty$ and the system is unstable.
$-1<a<0$: In this case $h_{n}=a^{n}$ will be a oscillating but decreasing function of n and $\lim _{n \rightarrow \infty} h_{n}=0$ and the system is stable.
$a=-1$: The difference equation is $y_{n}=-y_{n-1}+f_{n}$ and the impulse response is $h_{n}=(-1)^{n}$, that is a pure oscillator. The system is marginally stable.
$a<-1$: In this case $h_{n}=a^{n}$ will be a oscillating but increasing function of n and $\lim _{n \rightarrow \infty}\left|h_{n}\right|=$ ∞ and the system is unstable.

This simple demonstration shows that this system is stable only for the pole position $-1<$ $a<1$. In general for a system

$$
H(z)=K \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
$$

having complex conjugate poles $\left(p_{k}\right)$ and zeros $\left(z_{k}\right)$:
A discrete-time system will be stable only if all of the poles of its transfer function $H(z)$ lie within the unit circle on the z-plane.

4 The Frequency Response of Discrete-Time Systems

Consider the response of the system $H(z)$ to an infinite complex exponential sequence

$$
f_{n}=A \mathrm{e}^{\mathrm{j} \omega n}=A \cos (\omega n)+j A \sin (\omega n),
$$

where ω is the normalized frequency (rad/sample). The response will be given by the convolution

$$
\begin{aligned}
y_{n} & =\sum_{k=-\infty}^{\infty} h_{k} f_{n-k}=\sum_{k=-\infty}^{\infty} h_{k}\left(A \mathrm{e}^{\mathrm{j} \omega(n-k)}\right) \\
& =A\left(\sum_{k=-\infty}^{\infty} h_{k} \mathrm{e}^{-\mathrm{j} \omega k}\right) \mathrm{e}^{\mathrm{j} \omega n} \\
& =A H\left(e^{\mathrm{j} \omega}\right) e^{\mathrm{j} \omega n}
\end{aligned}
$$

where the frequency response function $H\left(e^{\mathrm{j} \omega}\right)$ is

$$
H\left(e^{\mathrm{j} \omega}\right)=\left.H(z)\right|_{z=e^{\mathrm{j} \omega}}
$$

that is
The frequency response function of a LTI discrete-time system is $H(z)$ evaluated on the unit circle - provided the ROC includes the unit circle. For a stable causal system this means there are no poles lying on the unit circle.

Alternatively, the frequency response may be based on a physical frequency Ω associated with an implied sampling interval ΔT, and

$$
H\left(e^{j \Omega \Delta T}\right)=\left.H(z)\right|_{z=e^{j} \Omega \Delta T}
$$

which is again evaluated on the unit circle, but at angle $\Omega \Delta T$.

From the definition of the DTFT based on a sampling interval ΔT

$$
H^{*}(j \Omega)=\sum_{n=0}^{\infty} h_{n} \mathrm{e}^{-m j n \Omega \Delta T}=\left.H(z)\right|_{z=\mathrm{e}^{-m j n \Omega \Delta T}}
$$

we can define the mapping between the imaginary axis in the s-plane and the unit-circle in the z-plane

$$
s=\mathrm{j} \Omega_{o} \longleftrightarrow z=\mathrm{e}^{\mathrm{j} \Omega_{o} \Delta T}
$$

The periodicity in $H\left(\mathrm{e}^{\mathrm{j} \Omega \Delta T}\right)$ can be clearly seen, with the "primary" strip in the s-plane (defined by $-\pi / \Delta T<\Omega<\pi / \Delta T)$ mapping to the complete unit-circle. Within the primary strip, the l.h. s-plane maps to the interior of the unit circle in the z-plane, while the r.h. s-plane maps to the exterior of the unit-circle.

Aside: We use the argument to differentiate between the various classes of transfer functions:

$H(s)$	$H(j \Omega)$	$H(z)$	$H\left(\mathrm{e}^{\mathrm{j} \omega}\right)$
\Uparrow	\Uparrow	\Uparrow	\Uparrow
Continuous	Continuous	Discrete	Discrete
Transfer	Frequency	Transfer	Frequency
Function	Response	Function	Response

5 The Inverse z-Transform

The formal definition of the inverse z-transform is as a contour integral in the z-plane,

$$
\frac{1}{2 \pi \mathrm{j}} \oint_{-\infty}^{\infty} F(z) z^{n-1} \mathrm{~d} z
$$

where the path is a ccw contour enclosing all of the poles of $F(z)$.
Cauchy's residue theorem states

$$
\frac{1}{2 \pi \mathrm{j}} \oint_{-\infty}^{\infty} F(z) \mathrm{d} z=\sum_{k} \operatorname{Res}\left[F(z), p_{k}\right]
$$

where $F(z)$ has N distinct poles $p_{k}, k=1, \ldots, N$ and ccw path lies in the ROC.
For a simple pole at $z=z_{o}$

$$
\operatorname{Res}\left[F(z), z_{o}\right]=\lim _{z \rightarrow z_{o}}\left(z-z_{o}\right) F(z)
$$

and for a pole of multiplicity m at $z=z_{o}$

$$
\operatorname{Res}\left[F(z), z_{o}\right]=\lim _{z \rightarrow z_{o}} \frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(z-z_{o}\right)^{m} F(z)
$$

The inverse z-transform of $F(z)$ is therefore

$$
f_{n}=\mathcal{Z}^{-1}\{F(z)\}=\sum_{k} \operatorname{Res}\left[F(z) z^{n-1}, p_{k}\right]
$$

■ Example 3

A first-order low-pass filter is implemented with the difference equation

$$
y_{n}=0.8 y_{n-1}+0.2 f_{n}
$$

Find the response of this filter to the unit-step sequence $\left\{u_{n}\right\}$.

Solution: The filter has a transfer function

$$
H(z)=\frac{Y(z)}{F(z)}=\frac{0.2}{1-0.8 z^{-1}}=\frac{0.2 z}{z-0.8}
$$

The input $\left\{f_{n}\right\}=\left\{u_{n}\right\}$ has a z-transform

$$
F(z)=\frac{z}{z-1}
$$

so that the z-transform of the output is

$$
Y(z)=H(z) U(z)=\frac{0.2 z^{2}}{(z-1)(z-0.8)}
$$

and from the Cauchy residue theorem

$$
\begin{aligned}
y_{n} & =\operatorname{Res}\left[Y(z) z^{n-1}, 1\right]+\operatorname{Res}\left[Y(z) z^{n-1}, 0.8\right] \\
& =\lim _{z \rightarrow 1}(z-1) Y(z) z^{n-1}+\lim _{z \rightarrow 0.8}(z-0.8) Y(z) z^{n-1} \\
& =\lim _{z \rightarrow 1} \frac{0.2 z^{n+1}}{z-0.8}+\lim _{z \rightarrow 0.8} \frac{0.2 z^{n+1}}{z-1} \\
& =1-0.8^{n+1}
\end{aligned}
$$

which is shown below

- Example 4

Find the impulse response of the system with transfer function

$$
H(z)=\frac{1}{1+z^{-2}}=\frac{z^{2}}{z^{2}+1}=\frac{z^{2}}{(z+\mathrm{j} 1)(z-\mathrm{j} 1)}
$$

Solution: The system has a pair of imaginary poles at $z= \pm \mathrm{j} 1$. From the Cauchy residue theorem

$$
\begin{aligned}
h_{n} & =\mathcal{Z}^{-1}\{H(z)\}=\operatorname{Res}\left[H(z) z^{n-1}, \mathrm{j} 1\right]+\operatorname{Res}\left[H(z) z^{n-1},-\mathrm{j} 1\right] \\
& =\lim _{z \rightarrow j 1} \frac{z^{n+1}}{z+\mathrm{j} 1}+\lim _{z \rightarrow-\mathrm{j} 1} \frac{z^{n+1}}{z-\mathrm{j} 1} \\
& =\frac{1}{\mathrm{j} 2}(\mathrm{j} 1)^{n+1}-\frac{1}{\mathrm{j} 2}(-\mathrm{j} 1)^{n+1} \\
& =\frac{\mathrm{j}^{n}}{2}\left(1+(-1)^{n+1}\right) \\
h_{n} & = \begin{cases}0 & n \text { odd } \\
(-1)^{n / 2} & n \text { even }\end{cases} \\
& =\cos (n \pi / 2)
\end{aligned}
$$

where we note that the system is a pure oscillator (poles on the unit circle) with a frequency of half the Nyquist frequency.

■ Example 5

Find the impulse response of the system with transfer function

$$
H(z)=\frac{1}{1+2 z+z^{-2}}=\frac{z^{2}}{z^{2}+2 z+1}=\frac{z^{2}}{(z+1)^{2}}
$$

Solution: The system has a pair of coincident poles at $z=-1$. The residue at $z=-1$ must be computed using

$$
\operatorname{Res}\left[F(z), z_{o}\right]=\lim _{z \rightarrow z_{o}} \frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(z-z_{o}\right)^{m} F(z) .
$$

With $m=2$, at $z=-1$,

$$
\begin{aligned}
\operatorname{Res}\left[H(z) z^{n-1},-1\right] & =\lim _{z \rightarrow-1} \frac{1}{(1)!} \frac{\mathrm{d}}{\mathrm{~d} z}(z-1)^{2} H(z) z^{n-1} \\
& =\lim _{z \rightarrow-1} \frac{\mathrm{~d}}{\mathrm{~d} z} z^{n+1} \\
& =(n+1)(-1)^{n}
\end{aligned}
$$

The impulse response is

$$
h_{n}=\mathcal{Z}^{-1}\{H(z)\}=\operatorname{Res}\left[H(z) z^{n-1},-1\right]=(n+1)(-1)^{n} .
$$

Other methods of determining the inverse z-transform include:
Partial Fraction Expansion: This is a table look-up method, similar to the method used for the inverse Laplace transform. Let $F(z)$ be written as a rational function of z^{-1} :

$$
\begin{aligned}
F(z) & =\frac{\sum_{k=0}^{M} b_{i} z^{-k}}{\sum_{k=0}^{N} a_{i} z^{-k}} \\
& =\frac{\prod_{k=1}^{M}\left(1-c_{i} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{i} z^{-1}\right)}
\end{aligned}
$$

If there are no repeated poles, $F(z)$ may be expressed as a set of partial fractions.

$$
F(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}
$$

where the A_{k} are given by the residues at the poles

$$
A_{k}=\lim _{z \rightarrow d_{k}}\left(1-d_{k} z^{-1}\right) F(z) .
$$

Since

$$
\begin{gathered}
\left(d_{k}\right)^{n} u_{n} \quad \stackrel{Z}{\longleftrightarrow} \frac{1}{1-d_{k} z^{-1}} \\
f_{n}=\left(\sum_{k=1}^{N} A_{k}\left(d_{k}\right)^{n}\right) u_{n} .
\end{gathered}
$$

■ Example 6

Find the response of the low-pass filter in Ex. 3 to an input

$$
f_{n}=(-0.5)^{n}
$$

Solution: From Ex. 3, and from the z-transform of $\left\{f_{n}\right\}$,

$$
F(z)=\frac{1}{1-0.5 z^{-1}}, \quad H(z)=\frac{0.2}{1-0.8 z^{-1}}
$$

so that

$$
\begin{aligned}
Y(z) & =\frac{0.2}{\left(1+0.5 z^{-1}\right)\left(1-0.8 z^{-1}\right)} \\
& =\frac{A_{1}}{1+0.5 z^{-1}}+\frac{A_{2}}{1-0.8 z^{-1}}
\end{aligned}
$$

Using residues

$$
\begin{aligned}
& A_{1}=\lim _{z \rightarrow-0.5} \frac{0.2}{1-0.8 z^{-1}}=\frac{0.1}{1.3} \\
& A_{2}=\lim _{z \rightarrow 0.8} \frac{0.2}{1+0.5 z^{-1}}=\frac{0.16}{1.3}
\end{aligned}
$$

and

$$
\begin{aligned}
y_{n} & =\frac{0.1}{1.3} \mathcal{Z}^{-1}\left\{\frac{1}{1+0.5 z^{-1}}\right\}+\frac{0.16}{1.3} \mathcal{Z}^{-1}\left\{\frac{1}{1-0.8 z^{-1}}\right\} \\
& =\frac{0.1}{1.3}(-0.5)^{n}+\frac{0.16}{1.3}(0.8)^{n}
\end{aligned}
$$

Note: (1) If $F(z)$ contains repeated poles, the partial fraction method must be extended as in the inverse Laplace transform.
(2) For complex conjugate poles - combine into second-order terms.

Power Series Expansion: Since

$$
F(z)=\sum_{n=-\infty}^{\infty} f_{n} z^{-n}
$$

if $F(z)$ can be expressed as a power series in z^{-1}, the coefficients must be f_{n}.

■ Example 7

Find $\mathcal{Z}^{-1}\left\{\log \left(1+a z^{-1}\right)\right\}$.
Solution: $F(z)$ is recognized as having a power series expansion:

$$
F(z)=\log \left(1+a z^{-1}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^{n}}{n} z^{-n} \quad \text { for }|a|<|z|
$$

Because the ROC defines a causal sequence, the samples f_{n} are

$$
f_{n}= \begin{cases}0 & \text { for } n \leq 0 \\ \frac{(-1)^{n+1} a^{n}}{n} & \text { for } n \geq 1\end{cases}
$$

Polynomial Long Division: For a causal system, with a transfer function written as a rational function, the first few terms in the sequence may sometimes be computed directly using polynomial division. If $F(z)$ is written as

$$
F(z)=\frac{N\left(z^{-1}\right)}{D\left(z^{-1}\right)}=f_{0}+f_{1} z^{-1}+f_{2} z^{-2}+f_{2} z^{-2}+\cdots
$$

the quotient is a power series in z^{-1} and the coefficients are the sample values.

■ Example 8

Determine the first few terms of f_{n} for

$$
F(z)=\frac{1+2 z^{-1}}{1-2 z^{-1}+z^{-2}}
$$

using polynomial long division.

Solution:

$$
\begin{array}{rl}
1-2 z^{-1}+z^{-2} & 1+4 z^{-1}+7 z^{-2}+\cdots \\
\begin{array}{r}
1+2 z^{-1} \\
1-2 z^{-1}+z^{-2}
\end{array} \\
\frac{4 z^{-1}-z^{-2}}{4 z^{-1}-8 z^{-2}+4 z^{-3}} \\
7 z^{-2}-4 z^{-3}
\end{array}
$$

so that

$$
F(z)=\frac{1+2 z^{-1}}{1-2 z^{-1}+z^{-2}}=1+4 z^{-1}+7 z^{-2}+\cdots
$$

and in this case the general term is

$$
f_{n}=3 n+1 \quad \text { for } n \geq 0
$$

In general, the computation can become tedious, and it may be difficult to recognize the general term from the first few terms in the sequence.

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

