2.161 Signal Processing: Continuous and Discrete Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

2.161 Signal Processing - Continuous and Discrete Fall Term 2008

<u>Lecture 13^1 </u>

Reading:

- Proakis & Manolakis, Chapter 3 (The z-transform)
- Oppenheim, Schafer & Buck, Chapter 3 (The z-transform)

1 Introduction to Time-Domain Digital Signal Processing

Consider a continuous-time filter

$$f(t) \longrightarrow \begin{array}{c} \text{Continuous} \\ \text{system} \\ (h(t), H(s)) \end{array} \longrightarrow y(t)$$

such as simple first-order RC high-pass filter:

described by a transfer function

$$H(s) = \frac{RCs}{RCs+1}.$$

The ODE describing the system is

$$\tau \frac{\mathrm{d}y}{\mathrm{d}t} + y = \tau \frac{\mathrm{d}f}{\mathrm{d}t}$$

where $\tau = RC$ is the time constant.

Our task is to derive a simple discrete-time equivalent of this prototype filter based on samples of the input f(t) taken at intervals ΔT .

¹copyright © D.Rowell 2008

If we use a *backwards-difference* numerical approximation to the derivatives, that is

$$\frac{\mathrm{d}x}{\mathrm{d}t} \approx \frac{(x(n\Delta T) - x((n-1)\Delta T))}{\Delta T}$$

and adopt the notation $y_n = y(n\Delta T)$, and let $a = \tau/\Delta T$,

$$a(y_n - y_{n-1}) + y_n = a(f_n - f_{n-1})$$

and solving for y_n

$$y_n = \frac{a}{1+a}y_{n-1} + \frac{a}{1+a}f_n - \frac{a}{1+a}f_{n-1}$$

which is a first-order *difference equation*, and is the computational formula for a sampleby-sample implementation of digital high-pass filter derived from the continuous prototype above. Note that

- The "fidelity" of the approximation depends on ΔT , and becomes more accurate when $\Delta T \ll \tau$.
- At each step the output is a linear combination of the present and/or past samples of the output and input. This is a recursive system because the computation of the current output depends on prior values of the output.

In general, regardless of the design method used, a LTI digital filter implementation will be of a similar form, that is

$$y_n = \sum_{i=1}^N a_i y_{n-i} + \sum_{i=0}^M b_i f_{n-i}$$

where the a_i and b_i are constant coefficients. Then as in the simple example above, the current output is a weighted combination of past values of the output, and current and past values of the input.

• If $a_i \equiv 0$ for $i = 1 \dots N$, so that

$$y_n = \sum_{i=0}^M b_i f_{n-i}$$

The output is simply a weighted sum of the current and prior inputs. Such a filter is a non-recursive filter with a finite-impulse-response (FIR), and is known as a *moving* average (MA) filter, or an *all-zero* filter.

• If $b_i \equiv 0$ for $i = 1 \dots M$, so that

$$y_n = \sum_{i=0}^N a_i y_{n-i} + b_0 f_n$$

only the current input value is used. This filter is a recursive filter with an infiniteimpulse-response (IIR), and is known as an *auto-regressive* (AR) filter, or an *all-pole* filter. • With the full difference equation

$$y_n = \sum_{i=1}^{N} a_i y_{n-i} + \sum_{i=0}^{M} b_i f_{n-i}$$

the filter is a recursive filter with an infinite-impulse response (IIR), and is known as an *auto-regressive moving-average* (ARMA) filter.

2 The Discrete-time Convolution Sum

For a continuous system

$$f(t) \longrightarrow \begin{array}{c} \text{Continuous} \\ \text{system} \\ (h(t), H(s)) \end{array} \longrightarrow y(t)$$

the output y(t), in response to an input f(t), is given by the convolution integral:

$$y(t) = \int_0^\infty f(\tau)h(t-\tau)d\tau$$

where h(t) is the system impulse response.

For a LTI discrete-time system, such as defined by a difference equation, we define the pulse response sequence $\{h(n)\}$ as the response to a unit-pulse input sequence $\{\delta_n\}$, where

$$\delta_n = \begin{cases} 1 & n = 0\\ 0 & \text{otherwise.} \end{cases}$$

$$f_n \rightarrow f_n \rightarrow f_n$$

If the input sequence $\{f_n\}$ is written as a sum of weighted and shifted pulses, that is

$$f_n = \sum_{k=-\infty}^{\infty} f_k \delta_{n-k}$$

then by superposition the output will be a sequence of similarly weighted and shifted pulse responses

$$y_n = \sum_{k=-\infty}^{\infty} f_k h_{n-k}$$

which defines the *convolution sum*, which is analogous to the convolution integral of the continuous system.

3 The *z*-Transform

The z-transform in discrete-time system analysis and design serves the same role as the Laplace transform in continuous systems. We begin here with a parallel development of both the z and Laplace transforms from the Fourier transforms.

The Laplace Transform

(1) We begin with causal f(t) and find its Fourier transform (Note that because f(t) is causal, the integral has limits of 0 and ∞):

$$F(j\Omega) = \int_0^\infty f(t)e^{-j\Omega t}dt$$

(2) We note that for some functions f(t) (for example the unit step function), the Fourier integral does not converge.

(3) We introduce a weighted function

$$w(t) = f(t)e^{-\sigma t}$$

and note

$$\lim_{\sigma \to 0} w(t) = f(t)$$

The effect of the exponential weighting by $e^{-\sigma t}$ is to allow convergence of the integral for a much broader range of functions f(t).

(4) We take the Fourier transform of w(t)

$$W(j\Omega) = \tilde{F}(j\Omega|\sigma) = \int_0^\infty \left(f(t)e^{-\sigma t}\right)e^{-j\Omega t}dt$$
$$= \int_0^\infty f(t)e^{-(\sigma+j\Omega)}dt$$

and define the complex variable $s = \sigma + j\Omega$ so that we can write

$$F(s) = \tilde{F}(j\omega|\sigma) = \int_0^\infty f(t)e^{-st}dt$$

F(s) is the one-sided Laplace Transform. Note that the Laplace variable $s = \sigma + j\Omega$ is expressed in Cartesian form.

The Z transform

(1) We sample f(t) at intervals ΔT to produce $f^*(t)$. We take its Fourier transform (and use the sifting property of $\delta(t)$) to produce

$$F^*(j\Omega) = \sum_{n=0}^{\infty} f_n e^{-jn\Omega\Delta T}$$

(2) We note that for some sequences f_n (for example the unit step sequence), the summation does not converge.

(3) We introduce a weighted sequence

$$\{w_n\} = \left\{f_n r^{-n}\right\}$$

and note

$$\lim_{r \to 1} \left\{ w_n \right\} = \left\{ f_n \right\}$$

The effect of the exponential weighting by r^{-n} is to allow convergence of the summation for a much broader range of sequences f_n .

(4) We take the Fourier transform of w_n

$$W^*(j\Omega) = \tilde{F}^*(j\Omega|r) = \sum_{n=0}^{\infty} (f_n r^{-n}) e^{-jn\Omega\Delta T}$$
$$= \sum_{n=0}^{\infty} f_n (r e^{j\Omega\Delta T})^{-n}$$

and define the complex variable $z = re^{j\Omega\Delta T}$ so that we can write

$$F(z) = \tilde{F}^*(j\Omega|r) = \sum_{n=0}^{\infty} f_n z^{-n}$$

F(z) is the one-sided Z-transform. Note that $z = re^{j\Omega\Delta T}$ is expressed in polar form.

The Laplace Transform (contd.)

(5) For a causal function f(t), the region of convergence (ROC) includes the *s*-plane to the right of all poles of $F(j\Omega)$.

(6) If the ROC includes the imaginary axis, the FT of f(t) is $F(j\Omega)$:

$$F(j\Omega) = F(s)|_{s=j\Omega}$$

(7) The convolution theorem states

$$f(t) \otimes g(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau \stackrel{\mathcal{L}}{\longleftrightarrow} F(s) G(s)$$

(8) For an LTI system with transfer function H(s), the frequency response is

$$H(s)|_{s=j\Omega} = H(j\Omega)$$

if the ROC includes the imaginary axis.

From the above derivation, the Z-transform of a sequence $\{f_n\}$ is

$$F(z) = \sum_{n = -\infty}^{\infty} f_n z^{-n}$$

where $z = r e^{j\omega}$ is a complex variable. For a causal sequence $f_n = 0$ for n < 0, the transform

The Z transform (contd.)

(5) For a right-sided (causal) sequence $\{f_n\}$ the region of convergence (ROC) includes the *z*-plane at a radius greater than all of the poles of F(z).

(6) If the ROC includes the unit circle, the DFT of $\{f_n\}$, n = 0, 1, ..., N - 1. is $\{F_m\}$ where

$$F_m = F(z)|_{z=e^{j\omega_m}} = F(e^{j\omega_m}),$$

where $\omega_m = 2\pi m/N$ for $m = 0, 1, \dots, N-1$. (7) The convolution theorem states

$$\{f_n\} \otimes \{g_n\} = \sum_{m=-\infty}^{\infty} f_m g_{n-m} \stackrel{\mathbb{Z}}{\longleftrightarrow} F(z)G(z)$$

(8) For a discrete LSI system with transfer function H(z), the frequency response is

$$H(z)|_{z=e^{j\omega}} = H(e^{j\omega}) \quad |\omega| \le \pi$$

if the ROC includes the unit circle.

can be written

$$F(z) = \sum_{n=0}^{\infty} f_n z^{-r}$$

Example: The finite sequence $\{f_0, \ldots, f_3\} = \{5, 3, -1, 4\}$ has the z-transform

$$F(z) = 5z^0 + 3z^{-1} - z^{-2} + 4z^{-3}$$

The Region of Convergence: For a given sequence, the region of the *z*-plane in which the sum converges is defined as the *region of convergence* (ROC). In general, within the ROC

$$\sum_{n=-\infty}^{\infty} \left| f_n r^{-n} \right| < \infty$$

and the ROC is in general an annular region of the z-plane:

- (a) The ROC is a ring or disk in the z-plane.
- (b) The ROC cannot contain any poles of F(z).
- (c) For a finite sequence, the ROC is the entire z-plane (with the possible exception of z = 0 and $z = \infty$.
- (d) For a causal sequence, the ROC extends outward from the outermost pole.
- (e) for a left-sided sequence, the ROC is a disk, with radius defined by the innermost pole.
- (f) For a two sided sequence the ROC is a disk bounded by two poles, but not containing any poles.
- (g) The ROC is a connected region.

z-Transform Examples: In the following examples $\{u_n\}$ is the unit step sequence,

$$u_n = \begin{cases} 0 & n < 0\\ 1 & n \ge 0 \end{cases}$$

and is used to force a causal sequence.

13 - 6

(1) $\{f_n\} = \{\delta_n\}$ (the digital pulse sequence) From the definition of F(z):

$$F(z) = 1z^0 = 1 \qquad \text{for all } z.$$

(2) $\{f_n\} = \{a^n u_n\}$

$$F(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(az^{-1}\right)^n$$
$$\boxed{\{a^n\} \stackrel{\mathcal{Z}}{\longleftrightarrow} F(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a} \quad \text{for } |z| > a.}$$

since

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \text{for } x < 1.$$

(3) $\{f_n\} = \{u_n\}$ (the unit step sequence).

$$F(z) = \sum_{n=0}^{\infty} z^{-n} = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1} \quad \text{for } |z| < 1$$

from (2) with a = 1.

(4)
$$\{f_n\} = \{e^{-bn}u_n\}.$$

$$F(z) = \sum_{n=0}^{\infty} e^{-bn}z^{-n} = \sum_{n=0}^{\infty} (e^{-b}z^{-1})^n$$

$$\left\{e^{-bn}\} \stackrel{\mathcal{Z}}{\longleftrightarrow} F(z) = \frac{1}{1 - e^{-b}z^{-1}} = \frac{z}{z - e^{-bn}} \quad \text{for } |z| > e^{-b}.$$

from (2) with $a = e^{-b}$.

(5) $\{f_n\} = \{ e^{-b|n|} \}.$

$$F(z) = \sum_{n=-\infty}^{0} (e^{-b}z)^{-n} + \sum_{n=0}^{\infty} (e^{-b}z^{-1})^{n} - 1$$
$$= \frac{1}{1 - e^{-b}z} + \frac{1}{1 - e^{-b}z^{-1}} - 1$$

Note that the item $f_0 = 1$ appears in each sum, therefore it is necessary to subtract 1.

$$\{ e^{-b|n|} \} \xrightarrow{\mathcal{Z}} F(z) = \frac{1 - e^{-2b}}{(1 - e^{-b}z)(1 - e^{-b}z^{-1})} \quad \text{for } e^{-b} < |z| < e^{b}.$$

(6)
$$\{f_n\} = \{ e^{-j\omega_0 n} u_n \} = \{ \cos(\omega_0 n) u_n \} - j \{ \sin(\omega_0 n) u_n \} .$$
$$F(z) = \mathcal{Z} \{ \cos(\omega_0 n) u_n \} - j \mathcal{Z} \{ \sin(\omega_0 n) u_n \} \}$$

From (1)

$$F(z) = \frac{1}{1 - e^{-j\omega_0} z^{-1}} \quad \text{for } |z| > 1$$

= $\frac{1 - \cos(\omega_0) z^{-1} - j\sin(\omega_0)}{1 - 2\cos(\omega_0) z_* - 1 + z^{-2}}$
= $\frac{z^2 - \cos(\omega_0) z - j\sin(\omega_0) z^2}{z^2 - 2\cos(\omega_0) z + 1}$

and therefore

$$\mathcal{Z}\left\{\cos(\omega_0 n)u_n\right\} = \frac{z^2 - \cos(\omega_0)z}{z^2 - 2\cos(\omega_0)z + 1} \quad \text{for } |z| > 1$$
$$\mathcal{Z}\left\{\sin(\omega_0 n)u_n\right\} = \frac{\sin(\omega_0)z^2}{z^2 - 2\cos(\omega_0)z + 1} \quad \text{for } |z| > 1$$

Properties of the z-Transform: Refer to the texts for a full description. We simply summarize some of the more important properties here.

(a) Linearity:

$$a\{f_n\} + b\{g_n\} \xleftarrow{\mathcal{Z}} aF(z) + bG(z)$$
 ROC: Intersection of ROC_f and ROC_g.

(b) Time Shift:

$$\{f_{n-m}\} \stackrel{\mathbb{Z}}{\longleftrightarrow} z^{-m} F(z) \qquad \text{ROC: } \operatorname{ROC}_f \text{ except for } z = 0 \text{ if } k < 0, \text{ or } z = \infty \text{ if } k > 0.$$

If $g_n = f_{n-m}$,

$$G(z) = \sum_{n=-\infty}^{\infty} f_{n-m} z^{-n} = \sum_{k=-\infty}^{\infty} f_k z^{-(k+m)} = z^{-m} F(z).$$

This is an important property in the analysis and design of discrete-time systems. We will often have recourse to a unit-delay block:

$$f_n \longrightarrow$$
 Unit Delay $y_n = f_{n-1}$

(c) Convolution:

$$\{f_n\} \otimes \{g_n\} \xleftarrow{\mathcal{Z}} F(z)G(z)$$
 ROC: Intersection of ROC_f and ROC_g .

where $\{f_n\} \otimes \{g_n\} = \sum_{k=-\infty}^{\infty} f_k g_{n-k}$ is the convolution sum.

Let

$$Y(z) = \sum_{n=-\infty}^{\infty} y_n z^{-n} = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} f_k g_{n-k} \right) z^{-n}$$

$$= \sum_{k=-\infty}^{\infty} f_k \left(\sum_{n=-\infty}^{\infty} g_{n-k} z^{-(n-k)} \right) z^{-k} = \sum_{k=-\infty}^{\infty} f_k z^{-k} \sum_{m=-\infty}^{\infty} g_m z^{-m}$$

$$= F(z)G(z)$$

(d) Conjugation of a complex sequence:

$$\left\{\overline{f}_n\right\} \xleftarrow{\mathcal{Z}} \overline{F}(z) \qquad \text{ROC: } \operatorname{ROC}_f$$

(e) Time reversal:

$$\{f_{-n}\} \xleftarrow{\mathcal{Z}} F(1/z) \qquad \text{ROC:} \quad \frac{1}{r_1} < |z| < \frac{1}{r_2}$$

where the ROC of F(z) lies between r_1 and r_2 .

(e) Scaling in the z-domain:

$$\left| \{a^n f_n\} \xleftarrow{\mathcal{Z}} F(a^{-1}z) \qquad \text{ROC:} \quad |a| \, r_1 < |z| < |a| \, r_2 \right|$$

where the ROC of F(z) lies between r_1 and r_2 .

(e) Differentiation in the z-domain:

$$\{nf_n\} \xleftarrow{\mathcal{Z}} -z \frac{\mathrm{d}F(z)}{\mathrm{d}z} \qquad \mathrm{ROC:} \ r_2 < |z| < r_1$$

where the ROC of F(z) lies between r_1 and r_2 .