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Lecture 131 

Reading: 

• Proakis & Manolakis, Chapter 3 (The z-transform) 

• Oppenheim, Schafer & Buck, Chapter 3 (The z-transform) 

Introduction to Time-Domain Digital Signal Processing 

Consider a continuous-time filter 

� � � � � � � � � � � � 	

�  � � � � � � � 	 
 	 � � � 
  � �


 �  � � � � �  � � �

such as simple first-order RC high-pass filter: 

� 
� � � 

described by a transfer function 

H(s) =  
RCs 

RCs + 1  
. 

The ODE describing the system is 

τ 
dy 
dt 

+ y = τ 
df 
dt 

where τ = RC is the time constant. 
Our task is to derive a simple discrete-time equivalent of this prototype filter based on 

samples of the input f(t) taken at intervals ΔT . 
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�
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If we use a backwards-difference numerical approximation to the derivatives, that is 

dx (x(nΔT ) − x((n − 1)ΔT )≈ 
dt ΔT 

and adopt the notation y = y(nΔT ), and let a = τ/ΔT ,n 

a(yn − yn−1) +  yn = a(fn − fn−1) 

and solving for yn 
a a a 

yn = yn−1 + fn − fn−1
1 +  a 1 +  a 1 +  a 

which is a first-order difference equation, and is the computational formula for a sample-
by-sample implementation of digital high-pass filter derived from the continuous prototype 
above. Note that 

•	 The “fidelity” of the approximation depends on ΔT , and becomes more accurate when 
ΔT � τ . 

•	 At each step the output is a linear combination of the present and/or past samples 
of the output and input. This is a recursive system because the computation of the 
current output depends on prior values of the output. 

In general, regardless of the design method used, a LTI digital filter implementation will be 
of a similar form, that is 

N M 

yn = aiyn−i + bifn−i 

i=1 i=0 

where the ai and bi are constant coefficients. Then as in the simple example above, the 
current output is a weighted combination of past values of the output, and current and past 
values of the input. 

• If ai ≡ 0 for i = 1  . . . N , so that 

M � 
yn = bifn−i 

i=0 

The output is simply a weighted sum of the current and prior inputs. Such a filter is 
a non-recursive filter with a finite-impulse-response (FIR), and is known as a moving 
average (MA) filter, or an all-zero filter. 

•	 If bi ≡ 0 for i = 1  . . . M , so that 

N 

yn = aiyn−i + b0fn 

i=0 

only the current input value is used. This filter is a recursive filter with an infinite-
impulse-response (IIR), and is known as an auto-regressive (AR) filter, or an all-pole 
filter. 
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• With the full difference equation 
N M 

yn = aiyn−i + bifn−i 

i=1 i=0 

the filter is a recursive filter with an infinite-impulse response (IIR), and is known as 
an auto-regressive moving-average (ARMA) filter. 

The Discrete-time Convolution Sum 

For a continuous system 

� � � � � � � � � � � � 	
�  � � � � � � � 	 
 	 � � � 
  � �

 �  � � � � �  � � � 
the output y(t), in response to an input f(t), is given by the convolution integral: � ∞ 

y(t) =  f(τ)h(t − τ)dτ 
0 

where h(t) is the system impulse response. 
For a LTI discrete-time system, such as defined by a difference equation, we define the 

pulse response sequence {h(n)} as the response to a unit-pulse input sequence {δn}, where 

1 n = 0  
δn = 

0 otherwise. 

� � � � � � � � � � � � 
� � �
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� 
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� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � 

If the input sequence {fn} is written as a sum of weighted and shifted pulses, that is 
∞ 

fn = fkδn−k 

k=−∞ 

then by superposition the output will be a sequence of similarly weighted and shifted pulse 
responses 

∞ 

yn = fkhn−k 

k=−∞ 

which defines the convolution sum, which is analogous to the convolution integral of the 
continuous system. 

The z-Transform 

The z-transform in discrete-time system analysis and design serves the same role as the 
Laplace transform in continuous systems. We begin here with a parallel development of 
both the z and Laplace transforms from the Fourier transforms. 
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The Laplace Transform 

(1) We begin with causal f(t) and find its 
Fourier transform (Note that because f(t) is  
causal, the integral has limits of 0 and ∞): � ∞ 

F (jΩ) = f(t)e −jΩtdt 
0 

(2) We note that for some functions f(t) (for 
example the unit step function), the Fourier 
integral does not converge. 

(3) We introduce a weighted function 

w(t) =  f(t)e −σt 

and note 
lim w(t) =  f(t)
σ→0 

The effect of the exponential weighting by e−σt 

is to allow convergence of the integral for a 
much broader range of functions f(t). 

(4) We take the Fourier transform of w(t) � ∞ 

W (jΩ) = F̃ (jΩ|σ) =  
� 
f(t)e −σt 

� 
e −jΩtdt 

0 � ∞ 

= f(t)e −(σ+jΩ)dt 
0 

and define the complex variable s = σ + jΩ so  
that we can write � ∞ 

F (s) =  F̃ (jω|σ) =  f(t)e −stdt 
0 

F (s) is the one-sided Laplace Transform. Note 
that the Laplace variable s = σ + jΩ is ex
pressed in Cartesian form. 

The Z transform 

(1) We sample f(t) at intervals ΔT to produce 
f ∗(t). We take its Fourier transform (and use 
the sifting property of δ(t)) to produce 

∞ 

F ∗ (jΩ) = fne −jnΩΔT 

n=0 

(2) We note that for some sequences fn (for 
example the unit step sequence), the summa
tion does not converge. 

(3) We introduce a weighted sequence 

{wn} = fnr −n 

and note 
lim {wn} = {fn}
r→1 

The effect of the exponential weighting by r−n 

is to allow convergence of the summation for 
a much broader range of sequences fn. 

(4) We take the Fourier transform of wn 

∞ 

W ∗ (jΩ) = F̃ ∗ (jΩ|r) =  
� 
fnr −n 

� 
e −jnΩΔT 

n=0 
∞ 

= 
� 

fn 

� 
rejΩΔT 

�−n 

n=0 

and define the complex variable z = rejΩΔT so 
that we can write 

∞ 

F (z) =  F̃ ∗ (jΩ|r) =  fnz −n 

n=0 

F (z) is the one-sided Z-transform. Note that 
z = rejΩΔT is expressed in polar form. 

13–4




� 

� � 

� � � � 

� � � � 

� 

� 

The Laplace Transform (contd.) 

(5) For a causal function f(t), the region of 
convergence (ROC) includes the s-plane to the 
right of all poles of F (jΩ). 

� � 

� � � � � � � � � � � � 

(6) If the ROC includes the imaginary axis, 
the FT of f(t) is  F (jΩ): 

F (jΩ) = F (s) |s=jΩ 

(7) The convolution theorem states � ∞ L
f(t)⊗g(t) =  f(τ)g(t−τ)dτ ⇐⇒ F (s)G(s) 

−∞ 

(8) For an LTI system with transfer function 
H(s), the frequency response is 

H(s) |s=jΩ = H(jΩ) 

if the ROC includes the imaginary axis. 

The Z transform (contd.) 

(5) For a right-sided (causal) sequence {fn}
the region of convergence (ROC) includes the 
z-plane at a radius greater than all of the poles 
of F (z). 

� � � � � 

� � � � � � � � � � � � 

� � � � 

� � � � � � � � � � � 

(6) If the ROC includes the unit circle, the 
DFT of {fn}, n = 0, 1, . . . , N  − 1. is {Fm}
where 

jωmFm = F (z) |z=e = F (ejωm), 

where ωm = 2πm/N for m = 0, 1, . . . , N  − 1. 
(7) The convolution theorem states 

∞ 
Z{fn} ⊗ {gn} = fmgn−m ⇐⇒ F (z)G(z) 

m=−∞ 

(8) For a discrete LSI system with transfer 
function H(z), the frequency response is 

jωH(z) |z=e = H(ejω) |ω| ≤ π 

if the ROC includes the unit circle. 

From the above derivation, the Z-transform of a sequence {fn} is 

∞ 

F (z) =  fnz −n 

n=−∞ 

where z = r ej ω is a complex variable. For a causal sequence fn = 0 for n < 0, the transform 
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can be written ∞ 

F (z) =  fnz −n 

n=0 

Example: The finite sequence {f0, . . . , f3} = {5, 3,−1, 4} has the z-transform 

F (z) = 5z 0 + 3z −1 − z −2 + 4z −3 

The Region of Convergence: For a given sequence, the region of the z-plane in which 

the sum converges is defined as the region of convergence (ROC). In general, within the ROC 

∞ �fnr −n � < ∞ 
n=−∞ 

and the ROC is in general an annular region of the z-plane: 

� 

� 

� 

� 

�  � � 

�  � � 
� � � � � � � 

� � �
�  � � � � � � � � � � � 	 �   � �
� � � ! � � � ! � �� � 

(a) The ROC is a ring or disk in the z-plane. 

(b) The ROC cannot contain any poles of F (z). 

(c)	 For a finite sequence, the ROC is the entire z-plane (with the possible exception of z = 0  
and z = ∞. 

(d) For a causal sequence, the ROC extends outward from the outermost pole. 

(e) for a left-sided sequence, the ROC is a disk, with radius defined by the innermost pole. 

(f)	 For a two sided sequence the ROC is a disk bounded by two poles, but not containing 
any poles. 

(g) The ROC is a connected region.


z-Transform Examples: In the following examples {un} is the unit step sequence,


0 n <  0 
un = 

1 n ≥ 0 

and is used to force a causal sequence. 
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(1) {fn} = {δn} (the digital pulse sequence) 
From the definition of F (z): 

F (z) = 1z 0 = 1 for all z. 

(2) {fn} = {anun} 

n
� 

z−n 
�

F (z) = 
∞ 

a = 
∞ �

az−1
�n 

n=0 n=0 

n Z 
F (z) = 

1 
= 

z	 
for z > a. {a } ←→ 

1 − az−1 z − a 
| | 

since
 ∞ 
1
 n

� 
x = for x < 1. 

1 − x 
n=0 

(3)	 {fn} = {un} (the unit step sequence). 

∞ 
1 z 

F (z) = 
� 

z−n = = for z < 1 
1 − z−1 z − 1 

| |
n=0 

from (2) with a = 1. 

(4) {fn} = 
� 

e−bnun

�
. 

∞ ∞ 

F (z) = 
� 

e−bn z−n = 
� � 

e−b z−1
�n 

n=0 n=0 

� 
e−bn

�	 1 zZ 
F (z) = =	 for z > e−b . 

z−1	 z − e−bn
←→ 

1 − e−b
| | 

from (2) with a = e−b .
 

n
(5) {fn} = 
� 

e−b| |�. 

0 ∞ 

F (z) = 
� � 

e−b z
�−n 

+ 
� � 

e−b z−1
�n − 1 

n=−∞ n=0 

1 1
 
=

1 − e−bz 
+

1 − e−bz−1 
− 1
 

Note that the item f0 = 1 appears in each sum, therefore it is necessary to subtract 1. 

n	 b
� 

e−b| |� Z 
F (z) = 

1 − e−2b 

for e−b < z < e . ←→ 
(1 − e−bz)(1 − e−bz−1)	 

| | 
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Â ( z )

Á ( z )
z - p l a n e

R O C

X Xe - b e b

(6)	 {fn} = { e−jω0nun} = {cos(ω0n)un} − j {sin(ω0n)un} . 

F (z) = Z {cos(ω0n)un} − jZ {sin(ω0n)un} 

From (1)
 

1
 
F (z) =	 

1 − e−jω0 z−1 
for z > 1| | 

1 − cos(ω0)z
−1 − j sin(ω0) 

= 
1 − 2 cos(ω0)z∗−1 + z−2 

z2 − cos(ω0)z − j sin(ω0)z
2 

= 
z2 − 2 cos(ω0)z + 1 

and therefore 

z2 − cos(ω0)z Z {cos(ω0n)un} =	 for z > 1 
2z − 2 cos(ω0)z + 1 

| | 
sin(ω0)z

2 

Z {sin(ω0n)un} =	 for z > 1 
2z − 2 cos(ω0)z + 1	 

| | 

Properties of the z-Transform: Refer to the texts for a full description. We simply 
summarize some of the more important properties here. 

(a) Linearity: 

Z 
aF (z) + bG(z) ROC: Intersection of ROCf and ROCg.a {fn} + b {gn} ←→ 

(b) Time Shift:
 

Z 
z−mF (z){fn−m} ←→ ROC: ROCf except for z = 0 if k < 0, or z = ∞ if k > 0. 

If gn = fn−m, 
∞	 ∞ 

fkz
−(k+m)G(z) = 

� 
fn−mz−n = 

� 
= z−mF (z). 

n=−∞ k=−∞ 

This is an important property in the analysis and design of discrete-time systems. We 
will often have recourse to a unit-delay block: 
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f y   =  fn nz n - 1- 1
U n i t  D e l a y

(c) Convolution:
 

Z{fn} ⊗ {gn} ←→ F (z)G(z) ROC: Intersection of ROCf and ROCg. 

∞
where {fn} ⊗ {gn} = 

� 
fkgn−k is the convolution sum. 

k=−∞
Let 

∞ ∞ 
� ∞ 

� 

Y (z) = 
� 

ynz−n = 
� � 

fkgn−k z−n 

n=−∞ n=−∞ k=−∞ 

∞ 
� ∞ 

� ∞ ∞ 

= 
� 

fk 

� 
gn−kz

−(n−k) z−k = 
� 

fkz
−k 

� 
gmz−m 

k=−∞ n=−∞ k=−∞ m=−∞ 

= F (z)G(z) 

(d) Conjugation of a complex sequence: 

�
fn

� Z 
F (z) ROC: ROCf←→ 

(e) Time reversal:
 

Z 
F (1/z) ROC: 

1 
< z < 

1 {f−n} ←→ 
r1 

| | 
r2 

where the ROC of F (z) lies between r1 and r2. 

(e) Scaling in the z-domain: 

Z 
F (a−1 {a nfn} ←→ z) ROC: |a| r1 < |z| < |a| r2 

where the ROC of F (z) lies between r1 and r2. 

(e) Differentiation in the z-domain: 

{nfn} 
Z dF (z) 

ROC: r2 < z < r1←→ −z 
dz 

| | 

where the ROC of F (z) lies between r1 and r2. 
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