MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology
 Department of Mechanical Engineering

 2.161 Signal Processing - Continuous and Discrete

 2.161 Signal Processing - Continuous and Discrete Fall Term 2008

 Fall Term 2008}

Lecture $13{ }^{1}$

Reading:

- Proakis \& Manolakis, Chapter 3 (The z-transform)
- Oppenheim, Schafer \& Buck, Chapter 3 (The z-transform)

1 Introduction to Time-Domain Digital Signal Processing

Consider a continuous-time filter

such as simple first-order RC high-pass filter:

described by a transfer function

$$
H(s)=\frac{R C s}{R C s+1}
$$

The ODE describing the system is

$$
\tau \frac{\mathrm{d} y}{\mathrm{~d} t}+y=\tau \frac{\mathrm{d} f}{\mathrm{~d} t}
$$

where $\tau=R C$ is the time constant.
Our task is to derive a simple discrete-time equivalent of this prototype filter based on samples of the input $f(t)$ taken at intervals ΔT.

[^0]If we use a backwards-difference numerical approximation to the derivatives, that is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t} \approx \frac{(x(n \Delta T)-x((n-1) \Delta T)}{\Delta T}
$$

and adopt the notation $y_{n}=y(n \Delta T)$, and let $a=\tau / \Delta T$,

$$
a\left(y_{n}-y_{n-1}\right)+y_{n}=a\left(f_{n}-f_{n-1}\right)
$$

and solving for y_{n}

$$
y_{n}=\frac{a}{1+a} y_{n-1}+\frac{a}{1+a} f_{n}-\frac{a}{1+a} f_{n-1}
$$

which is a first-order difference equation, and is the computational formula for a sample-by-sample implementation of digital high-pass filter derived from the continuous prototype above. Note that

- The "fidelity" of the approximation depends on ΔT, and becomes more accurate when $\Delta T \ll \tau$.
- At each step the output is a linear combination of the present and/or past samples of the output and input. This is a recursive system because the computation of the current output depends on prior values of the output.

In general, regardless of the design method used, a LTI digital filter implementation will be of a similar form, that is

$$
y_{n}=\sum_{i=1}^{N} a_{i} y_{n-i}+\sum_{i=0}^{M} b_{i} f_{n-i}
$$

where the a_{i} and b_{i} are constant coefficients. Then as in the simple example above, the current output is a weighted combination of past values of the output, and current and past values of the input.

- If $a_{i} \equiv 0$ for $i=1 \ldots N$, so that

$$
y_{n}=\sum_{i=0}^{M} b_{i} f_{n-i}
$$

The output is simply a weighted sum of the current and prior inputs. Such a filter is a non-recursive filter with a finite-impulse-response (FIR), and is known as a moving average (MA) filter, or an all-zero filter.

- If $b_{i} \equiv 0$ for $i=1 \ldots M$, so that

$$
y_{n}=\sum_{i=0}^{N} a_{i} y_{n-i}+b_{0} f_{n}
$$

only the current input value is used. This filter is a recursive filter with an infinite-impulse-response (IIR), and is known as an auto-regressive (AR) filter, or an all-pole filter.

- With the full difference equation

$$
y_{n}=\sum_{i=1}^{N} a_{i} y_{n-i}+\sum_{i=0}^{M} b_{i} f_{n-i}
$$

the filter is a recursive filter with an infinite-impulse response (IIR), and is known as an auto-regressive moving-average (ARMA) filter.

2 The Discrete-time Convolution Sum

For a continuous system

the output $y(t)$, in response to an input $f(t)$, is given by the convolution integral:

$$
y(t)=\int_{0}^{\infty} f(\tau) h(t-\tau) d \tau
$$

where $h(t)$ is the system impulse response.
For a LTI discrete-time system, such as defined by a difference equation, we define the pulse response sequence $\{h(n)\}$ as the response to a unit-pulse input sequence $\left\{\delta_{n}\right\}$, where

$$
\delta_{n}= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}
$$

If the input sequence $\left\{f_{n}\right\}$ is written as a sum of weighted and shifted pulses, that is

$$
f_{n}=\sum_{k=-\infty}^{\infty} f_{k} \delta_{n-k}
$$

then by superposition the output will be a sequence of similarly weighted and shifted pulse responses

$$
y_{n}=\sum_{k=-\infty}^{\infty} f_{k} h_{n-k}
$$

which defines the convolution sum, which is analogous to the convolution integral of the continuous system.

3 The z-Transform

The z-transform in discrete-time system analysis and design serves the same role as the Laplace transform in continuous systems. We begin here with a parallel development of both the z and Laplace transforms from the Fourier transforms.

The Laplace Transform

(1) We begin with causal $f(t)$ and find its Fourier transform (Note that because $f(t)$ is causal, the integral has limits of 0 and ∞):

$$
F(j \Omega)=\int_{0}^{\infty} f(t) e^{-j \Omega t} d t
$$

(2) We note that for some functions $f(t)$ (for example the unit step function), the Fourier integral does not converge.
(3) We introduce a weighted function

$$
w(t)=f(t) e^{-\sigma t}
$$

and note

$$
\lim _{\sigma \rightarrow 0} w(t)=f(t)
$$

The effect of the exponential weighting by $e^{-\sigma t}$ is to allow convergence of the integral for a much broader range of functions $f(t)$.
(4) We take the Fourier transform of $w(t)$

$$
\begin{aligned}
W(j \Omega)=\tilde{F}(j \Omega \mid \sigma) & =\int_{0}^{\infty}\left(f(t) e^{-\sigma t}\right) e^{-j \Omega t} d t \\
& =\int_{0}^{\infty} f(t) e^{-(\sigma+j \Omega)} d t
\end{aligned}
$$

and define the complex variable $s=\sigma+j \Omega$ so that we can write

$$
F(s)=\tilde{F}(j \omega \mid \sigma)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

$F(s)$ is the one-sided Laplace Transform. Note that the Laplace variable $s=\sigma+j \Omega$ is expressed in Cartesian form.

The Z transform

(1) We sample $\mathrm{f}(\mathrm{t})$ at intervals ΔT to produce $f^{*}(t)$. We take its Fourier transform (and use the sifting property of $\delta(t)$) to produce

$$
F^{*}(j \Omega)=\sum_{n=0}^{\infty} f_{n} e^{-j n \Omega \Delta T}
$$

(2) We note that for some sequences f_{n} (for example the unit step sequence), the summation does not converge.
(3) We introduce a weighted sequence

$$
\left\{w_{n}\right\}=\left\{f_{n} r^{-n}\right\}
$$

and note

$$
\lim _{r \rightarrow 1}\left\{w_{n}\right\}=\left\{f_{n}\right\}
$$

The effect of the exponential weighting by r^{-n} is to allow convergence of the summation for a much broader range of sequences f_{n}.
(4) We take the Fourier transform of w_{n}

$$
\begin{aligned}
W^{*}(j \Omega)=\tilde{F}^{*}(j \Omega \mid r) & =\sum_{n=0}^{\infty}\left(f_{n} r^{-n}\right) e^{-j n \Omega \Delta T} \\
& =\sum_{n=0}^{\infty} f_{n}\left(r e^{j \Omega \Delta T}\right)^{-n}
\end{aligned}
$$

and define the complex variable $z=r e^{j \Omega \Delta T}$ so that we can write

$$
F(z)=\tilde{F}^{*}(j \Omega \mid r)=\sum_{n=0}^{\infty} f_{n} z^{-n}
$$

$F(z)$ is the one-sided Z-transform. Note that $z=r e^{j \Omega \Delta T}$ is expressed in polar form.

The Laplace Transform (contd.)

(5) For a causal function $f(t)$, the region of convergence (ROC) includes the s-plane to the right of all poles of $F(j \Omega)$.

(6) If the ROC includes the imaginary axis, the FT of $f(t)$ is $F(j \Omega)$:

$$
F(j \Omega)=\left.F(s)\right|_{s=j \Omega}
$$

(7) The convolution theorem states
$f(t) \otimes g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau \stackrel{\mathcal{L}}{\Longleftrightarrow} F(s) G(s)$
(8) For an LTI system with transfer function $H(s)$, the frequency response is

$$
\left.H(s)\right|_{s=j \Omega}=H(j \Omega)
$$

if the ROC includes the imaginary axis.

The Z transform (contd.)
(5) For a right-sided (causal) sequence $\left\{f_{n}\right\}$ the region of convergence (ROC) includes the z-plane at a radius greater than all of the poles of $F(z)$.

(6) If the ROC includes the unit circle, the DFT of $\left\{f_{n}\right\}, n=0,1, \ldots, N-1$. is $\left\{F_{m}\right\}$ where

$$
F_{m}=\left.F(z)\right|_{z=e^{j \omega_{m}}}=F\left(e^{j \omega_{m}}\right)
$$

where $\omega_{m}=2 \pi m / N$ for $m=0,1, \ldots, N-1$.
(7) The convolution theorem states

$$
\left\{f_{n}\right\} \otimes\left\{g_{n}\right\}=\sum_{m=-\infty}^{\infty} f_{m} g_{n-m} \stackrel{\mathcal{Z}}{\Longleftrightarrow} F(z) G(z)
$$

(8) For a discrete LSI system with transfer function $H(z)$, the frequency response is

$$
\left.H(z)\right|_{z=e^{j \omega}}=H\left(e^{j \omega}\right) \quad|\omega| \leq \pi
$$

if the ROC includes the unit circle.

From the above derivation, the Z-transform of a sequence $\left\{f_{n}\right\}$ is

$$
F(z)=\sum_{n=-\infty}^{\infty} f_{n} z^{-n}
$$

where $z=r \mathrm{e}^{\mathrm{j} \omega}$ is a complex variable. For a causal sequence $f_{n}=0$ for $n<0$, the transform
can be written

$$
F(z)=\sum_{n=0}^{\infty} f_{n} z^{-n}
$$

Example: The finite sequence $\left\{f_{0}, \ldots, f_{3}\right\}=\{5,3,-1,4\}$ has the z-transform

$$
F(z)=5 z^{0}+3 z^{-1}-z^{-2}+4 z^{-3}
$$

The Region of Convergence: For a given sequence, the region of the z-plane in which the sum converges is defined as the region of convergence (ROC). In general, within the ROC

$$
\sum_{n=-\infty}^{\infty}\left|f_{n} r^{-n}\right|<\infty
$$

and the ROC is in general an annular region of the z-plane:

(a) The ROC is a ring or disk in the z-plane.
(b) The ROC cannot contain any poles of $F(z)$.
(c) For a finite sequence, the ROC is the entire z-plane (with the possible exception of $z=0$ and $z=\infty$.
(d) For a causal sequence, the ROC extends outward from the outermost pole.
(e) for a left-sided sequence, the ROC is a disk, with radius defined by the innermost pole.
(f) For a two sided sequence the ROC is a disk bounded by two poles, but not containing any poles.
(g) The ROC is a connected region.
z-Transform Examples: In the following examples $\left\{u_{n}\right\}$ is the unit step sequence,

$$
u_{n}= \begin{cases}0 & n<0 \\ 1 & n \geq 0\end{cases}
$$

and is used to force a causal sequence.
(1) $\quad\left\{f_{n}\right\}=\left\{\delta_{n}\right\}$ (the digital pulse sequence)

From the definition of $F(z)$:

$$
F(z)=1 z^{0}=1 \quad \text { for all } z .
$$

(2) $\left\{f_{n}\right\}=\left\{a^{n} u_{n}\right\}$

$$
\begin{gathered}
F(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
\left\{a^{n}\right\} \stackrel{Z}{\longleftrightarrow} F(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} \quad \text { for }|z|>a .
\end{gathered}
$$

since

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { for } x<1
$$

(3) $\left\{f_{n}\right\}=\left\{u_{n}\right\}$ (the unit step sequence).

$$
F(z)=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-z^{-1}}=\frac{z}{z-1} \quad \text { for }|z|<1
$$

from (2) with $a=1$.
(4) $\left\{f_{n}\right\}=\left\{\mathrm{e}^{-b n} u_{n}\right\}$.

$$
\begin{gathered}
F(z)=\sum_{n=0}^{\infty} \mathrm{e}^{-b n} z^{-n}=\sum_{n=0}^{\infty}\left(\mathrm{e}^{-b} z^{-1}\right)^{n} \\
\left\{\mathrm{e}^{-b n}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} F(z)=\frac{1}{1-\mathrm{e}^{-b} z^{-1}}=\frac{z}{z-\mathrm{e}^{-b n}} \quad \text { for }|z|>\mathrm{e}^{-b} .
\end{gathered}
$$

from (2) with $a=\mathrm{e}^{-b}$.
(5) $\left\{f_{n}\right\}=\left\{\mathrm{e}^{-b|n|}\right\}$.

$$
\begin{aligned}
F(z) & =\sum_{n=-\infty}^{0}\left(\mathrm{e}^{-b} z\right)^{-n}+\sum_{n=0}^{\infty}\left(\mathrm{e}^{-b} z^{-1}\right)^{n}-1 \\
& =\frac{1}{1-\mathrm{e}^{-b} z}+\frac{1}{1-\mathrm{e}^{-b} z^{-1}}-1
\end{aligned}
$$

Note that the item $f_{0}=1$ appears in each sum, therefore it is necessary to subtract 1 .

$$
\left\{\mathrm{e}^{-b|n|}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} F(z)=\frac{1-\mathrm{e}^{-2 b}}{\left(1-\mathrm{e}^{-b} z\right)\left(1-\mathrm{e}^{-b} z^{-1}\right)} \quad \text { for } \mathrm{e}^{-b}<|z|<\mathrm{e}^{b} .
$$

(6) $\left\{f_{n}\right\}=\left\{\mathrm{e}^{-j \omega_{0} n} u_{n}\right\}=\left\{\cos \left(\omega_{0} n\right) u_{n}\right\}-j\left\{\sin \left(\omega_{0} n\right) u_{n}\right\}$.

$$
F(z)=\mathcal{Z}\left\{\cos \left(\omega_{0} n\right) u_{n}\right\}-j \mathcal{Z}\left\{\sin \left(\omega_{0} n\right) u_{n}\right\}
$$

From (1)

$$
\begin{aligned}
F(z) & =\frac{1}{1-\mathrm{e}^{-j \omega_{0}} z^{-1}} \quad \text { for }|z|>1 \\
& =\frac{1-\cos \left(\omega_{0}\right) z^{-1}-j \sin \left(\omega_{0}\right)}{1-2 \cos \left(\omega_{0}\right) z_{*}-1+z^{-2}} \\
& =\frac{z^{2}-\cos \left(\omega_{0}\right) z-j \sin \left(\omega_{0}\right) z^{2}}{z^{2}-2 \cos \left(\omega_{0}\right) z+1}
\end{aligned}
$$

and therefore

$$
\begin{array}{ll}
\mathcal{Z}\left\{\cos \left(\omega_{0} n\right) u_{n}\right\}=\frac{z^{2}-\cos \left(\omega_{0}\right) z}{z^{2}-2 \cos \left(\omega_{0}\right) z+1} & \text { for }|z|>1 \\
\mathcal{Z}\left\{\sin \left(\omega_{0} n\right) u_{n}\right\}=\frac{\sin \left(\omega_{0}\right) z^{2}}{z^{2}-2 \cos \left(\omega_{0}\right) z+1} & \text { for }|z|>1
\end{array}
$$

Properties of the z-Transform: Refer to the texts for a full description. We simply summarize some of the more important properties here.
(a) Linearity:

$$
a\left\{f_{n}\right\}+b\left\{g_{n}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} a F(z)+b G(z) \quad \text { ROC: Intersection of } \mathrm{ROC}_{f} \text { and } \mathrm{ROC}_{g} .
$$

(b) Time Shift:
$\left\{f_{n-m}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-m} F(z) \quad$ ROC: ROC $_{f}$ except for $z=0$ if $k<0$, or $z=\infty$ if $k>0$.
If $g_{n}=f_{n-m}$,

$$
G(z)=\sum_{n=-\infty}^{\infty} f_{n-m} z^{-n}=\sum_{k=-\infty}^{\infty} f_{k} z^{-(k+m)}=z^{-m} F(z) .
$$

This is an important property in the analysis and design of discrete-time systems. We will often have recourse to a unit-delay block:

(c) Convolution:

$$
\left\{f_{n}\right\} \otimes\left\{g_{n}\right\} \stackrel{Z}{\longleftrightarrow} F(z) G(z) \quad \text { ROC: Intersection of } \mathrm{ROC}_{f} \text { and } \mathrm{ROC}_{g} .
$$

where $\left\{f_{n}\right\} \otimes\left\{g_{n}\right\}=\sum_{k=-\infty}^{\infty} f_{k} g_{n-k}$ is the convolution sum.
Let

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty} y_{n} z^{-n}=\sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} f_{k} g_{n-k}\right) z^{-n} \\
& =\sum_{k=-\infty}^{\infty} f_{k}\left(\sum_{n=-\infty}^{\infty} g_{n-k} z^{-(n-k)}\right) z^{-k}=\sum_{k=-\infty}^{\infty} f_{k} z^{-k} \sum_{m=-\infty}^{\infty} g_{m} z^{-m} \\
& =F(z) G(z)
\end{aligned}
$$

(d) Conjugation of a complex sequence:

$$
\left\{\bar{f}_{n}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} \bar{F}(z) \quad \text { ROC: } \mathrm{ROC}_{f}
$$

(e) Time reversal:

$$
\left\{f_{-n}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} F(1 / z) \quad \text { ROC: } \frac{1}{r_{1}}<|z|<\frac{1}{r_{2}}
$$

where the ROC of $F(z)$ lies between r_{1} and r_{2}.
(e) Scaling in the z-domain:

$$
\left\{a^{n} f_{n}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow} F\left(a^{-1} z\right) \quad \text { ROC: } \quad|a| r_{1}<|z|<|a| r_{2}
$$

where the ROC of $F(z)$ lies between r_{1} and r_{2}.
(e) Differentiation in the z-domain:

$$
\left\{n f_{n}\right\} \stackrel{\mathcal{Z}}{\longleftrightarrow}-z \frac{\mathrm{~d} F(z)}{\mathrm{d} z} \quad \text { ROC: } r_{2}<|z|<r_{1}
$$

where the ROC of $F(z)$ lies between r_{1} and r_{2}.

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

