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Fall Term 2008 

Lecture 121 

Reading: 

• Class Handout: The Fast Fourier Transform 

• Proakis and Manolakis (4th Ed.): Secs. 8.1 – 8.3 

• Oppemheim Schafer & Buck (2nd Ed.): Secs. 9.0 – 9.3 

The Fast Fourier Transform (contd.) 

In Lecture 11 we saw that we could write the DFT of a length N sequence as 

N−1 N−1 
−j 2πmn 

Fm = fn e N = fnWN
mn , m = 0, . . . , N  − 1 

n=0 n=0 

where WN = e−j 2π/N . We noted that the number of complex multiplication operations 
to compute the DFT is N2, but if we divided the original sequence into two length N/2 
sequences (based on even and odd samples) and computed the DFT of each shorter sequence, 
they could be combined 

Fm = Am + WN
mBm for m = 0  . . . (N/2 − 1), and 

Fm = Am−N/2 − WN
m−N/2

Bm−N/2 for m = N/2 . . . (N − 1) 

where {Am} is the DFT of the even-numbered samples, and {Bm} is the DFT of the odd-
numbered samples. 

� 

�

�

� 

�

� 

� 

	 


 





 


 

�

� 

� 

� 

� 

�

�

�

�

�

�

� 

� � � � � � � 	 
 � � 
 � � � 	 � � � � 	 � � � � � � � 

� � � � � � � 	 
 � � 
 � � � 	 � � � 	 � � � � � � � 

� �   �  �   �  �   �  � 	 	 �� � � � 

� �   �  �   �  �   �  � 	 	 �� � � 	 

� 
�
 �  
  �  �  � � 

�  � � 

� 
�
 �  
  �  �  � � 

�  � � 

� 
�
 �  
  �  �  � � 

�  � � 

� 
�
 �  
  �  �  � � 

�  � � 

�
�
 �  
  �  �  � � 

�  �  �   �  
  �  �  �  �
�
 � � 

�
�
 �  
  �  �  � � 

�  �  �   �  
  �  �  �  �
�
 � � 

�
�
 �  
  �  �  � � 

�  �  �   �  
  �  �  �  �
�
 � � 

�
	
 �  
  	  �  � � 

	  �  	   �  
  �  �  �  �
�
 � � 

1copyright ©c D.Rowell 2008 

0–1 



� 

� 

� 

� � 

� � 

� 

� � 

� 

� 

� 

� 

� 

	 

The total number of required complex multiplications is (N/2)2 for each shorter DFT, and 
N/2 to combine the two, giving a total of N(N + 1)/2, which is less than N2 . 

If N is divisible by 4, the process may be repeated, and each length N/2 DFT may be 
formed by decimating the two N/2 sequences into even and odd components, forming the 
length N/4 DFTs, and combining these back into a length N/2 DFT, as is shown for N = 8  
below: 
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Notice that all weights in the figure are expressed by convention as exponents of W8. 
In general, if the length of the data sequence is an integer power of 2, that is N = 2q for 
integer q, the DFT sequence {Fm} may be formed by adding additional columns to the left 
and halving the length of the DFT at each step, until the length is two. For example if 
N = 256 = 28 a total of seven column operations would be required. 

The final step is to evaluate the N/2 length-2 DFTs. Each one may be written 

F0 = f0 + W2
0f1 = f0 + f1


F1 = f0 + W2
1f1 = f0 − f1,


which is simply the sum and difference of the two sample points. No complex multiplications 
are necessary. The 2-point DFT is shown in signal-flow graph form below, and is known as 
the FFT butterfly. 
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The complete FFT algorithm for N = 8 is shown below. We note that if N = 2q, there 
will be q = log2(N) columns in the signal-flow graph, and after the sum and difference to 
form the 2-point DFTs there will be log2(N) − 1 column operations, each involving N/2 
complex multiplications, giving a total of N/2 (log2(N) − 1) ≤ N2 . We will address the 
issue of computational savings in more detail later. 
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Input Bit-Reversal: 
Notice that the algorithm described above requires that the input sequence { fn} be re
ordered in the left-hand column to accomplish the even-odd decomposition at each step. 
The particular order reqired by this form of the FFT is known as input bit reversal, which 
refers to a simple algorithm to determine the position k of the sample fn in the re-ordered 
sequence: 

1. Express the index n as a N -bit binary number. 

2. Reverse the order of the binary digits (bits) in the binary number. 

3. Translate the bit-reversed binary number back into decimal, to create the position in 
the sequence k. 

For example, the re-ordered position of f37 in a data sequence of length N = 256 = 28 is 
found from 

bit reversal
3710 = 001001012 −→ 101001002 = 16410 

so that f37 would be positioned at k = 164 in the decimated input sequence. 
The re-ordering procedure for N = 8 is: 

Input position n: 0 1 2 3 4 5 6 7 
(000)2 (001)2 (010)2 (011)2 (100)2 (101)2 (110)2 (111)2 

Bit reversal ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
(000)2 (100)2 (010)2 (110)2 (001)2 (101)2 (011)2 (111)2 

Modified position k: 0 4 2 6 1 5 3 7 

The Inverse Fast Fourier Transform (IFFT): 
The inverse FFT is defined as 

N−1 
1 j 2πmn 

Nfn = Fm e , n = 0, . . . , N  − 1 (1)
N 

m=0 
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While the IFFT can be implemented in the same manner as the FFT described above, it is 
possible to use a forward FFT routine to compute the IFFT as follows: Since the conjugate 
of a product is the product of the conjugates, if we take the complex conjugate of both sides 
we have 

N−1 
1 −j 2πmn 

Nfn = Fm e . 
N 

m=0 

The right-hand side is recognized as the DFT of Fm and can be computed using a for
ward FFT, such as described above. The complete IDFT may therefore be computed by 
conjugating the output, that is 

N−1 
1 −j 2πmn 

Nfn = Fm e , n = 0, . . . , N  − 1 (2)
N 

m=0 

The steps are: 

1. Conjugate the data set {Fm}. 
2. Compute the forward FFT. 

3. Conjugate the result and divide by N . 

Computational Savings of the FFT: 
As expressed above the computational requirements (in terms of complex multiplications) is 
MFFT = (N/2) log2(N) if the initial 2-point DFTs are implemented with exponentials. The 
number of complex multiplications for the direct DFT computation is MDFT = N2) We can  
therefore define a speed improvement factor MFFT/MDFT as is shown below: 

N MDFT MFFT MFFT/MDFT 

4 16 4 0.25 
8 64 12 0.188 

16 256 32 0.125 
32 1,024 80 0.0781 
64 4,096 192 0.0469 

128 16,384 448 0.0273 
256 65,536 1024 0.0156 
512 262,144 2,304 0.00879 

1024 1,048,576 5,120 0.00488 
2048 4,194,304 11,264 0.00268 
4096 16,777,216 24,576 0.00146 

Spectral Leakage in the DFT and Apodizing (Windowing) Func
tions 

Often apparently spurious spectral components will appear in the output of a DFT compu
tation. This phenomenon is known as spectral leakage. We examine the origin of this effect 
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briefly here by considering a finite sample set (length N) of a sinusoid of the form 

f(t) = cos(at) 

so that 
fn = cos(anΔT ) n = −N/2, . . . N/2 − 1 

Notice that in effect we have sampled a “windowed” version of f(t), or 

f̃(t) =  f(t)rect(NΔT ) 

where the rect function is defined 

rect(t) = 	
1 |t| < 1/2, 
0 otherwise 

The Fourier transform of the windowed sinusoid is the convolution of the two Fourier trans
forms 

F {cos(at)} = π (δ(Ω − a) +  δ(Ω + a)) 
sin(ΩNΔT/2)F {rect(NΔT )} = NΔT 

ΩNΔT/2 

and the Fourier transform of the product is 

F̃ (jΩ) = F {rect(NΔT ) cos(at)}

1


= (F {rect(NΔT )} ⊗ F {cos(at)})
2π 
NΔT sin ((Ω − a)NΔT/2) sin ((Ω + a)NΔT/2) 

=	 + 
2 (Ω − a)NΔT/2 (Ω + a)NΔT/2 

and the spectrum of the sampled waveform is 

F̃ ∗ (jΩ) = 
1 

F̂ (jΩ)
ΔT 
N sin ((Ω − a)NΔT/2) sin ((Ω + a)NΔT/2) 

=	 + 
2 (Ω − a)NΔT/2 (Ω + a)NΔT/2 

which is a pair of sinc functions centered on frequencies Ω = a and Ω = −a. The spacing of 
the zeros of each of the sinc functions is at intervals of ΔΩ = 2π/NΔT . 

We may consider the DFT as a comb filter that displays discrete lines of the spectrum 
F̃ ∗(jΩ) at frequencies: 

2πm 
Ω =  ; m = 0, 1, 2, . . . , N  − 1 

NΔT 

so that in the DFT, 

Fm = F̃ ∗ 2πm 
NΔT


Now consider what happens in two situations:
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(a)	 The frequency a in f(t) = cos(at) is such that the data record contains an integer 
number of periods. In this case the length of the data record 

2π	 2πM 
NΔT	 = M or a = , for M integer. 

a	 NΔT 

The DFT is � �

N sin(π(m − M)) sin(π(m + M))


Fm = +	 (3)
2 π(m − M) π(m + M) 

that is Fm = N/2 for m = ±M and Fm = 0 otherwise, which is what we would expect. 

(b)	 The frequency a in f(t) = cos(at) is such that the data record does not contain an integer 
number of periods. In this case the peak and zeros of the sinc functions will not line 
up with the frequencies 2πm/(NΔT ) in the DFT and the results will (1) not show the 
peak of the sinc functions, and (2) will show finite components at all frequencies. This 
is the origin of spectral leakage. 

Spectral leakage occurs when frequency components in the input function f(t) are 
not harmonics of the fundamental frequency k0 = 2π/(NΔT ), defined by the length 
of data record NΔT . Under such conditions the lines in the DFT do not accurately 
reflect the amplitude of the component, and spurious components appear adjacent 
to the component. 

This phenomenon is illustrated in the following two figures based on a DFT of length 16. In 
the first case the frequency of the the sinusoid is chosen so that there are four cycles in the 
data record. The DFT shows two clean components at the appropriate frequency with no 
evidence of leakage. 
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In the second case the data record contains 3.5 cycles of the sinusoidal component. The 
spectral leakage is severe: both the height of the main peak is reduced, and significant 
amplitudes are recorded for all spectral components. 
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Reduction of Leakage by an Apodizing (Windowing) Function The reason for the 
appearance of leakage components in the DFT of a truncated data set is the convolution of 
the data spectrum with that of the truncation window (the rect function). Each sinusoidal 
component in f(t) has a spectrum F (jΩ) that is a pair of impulses in the frequency domain: 
multiplication by the truncating function causes a spread in the width of the component. 

Leakage may be reduced (but not eliminated) by using a different function to truncate 
the series instead of the implicit rect function. These functions are known as an apodizing, 
or windowing, functions and are chosen to smoothly taper the data record to zero at the 
extremities, while minimizing the spectral spreading of each component. The data record 
then becomes 

f̃(t) =  f(t)w(t) 

or in the samples 
f̃n = fnwn 

where w(t) (or wn) is the windowing function. There are many windowing functions in 
common use, the following are perhaps the most common: 

Bartlett Window: This is a triangular ramp, tapered to zero at the extremities of the 
record 

w(t) = 	
1 − |t − T/2| /(T/2) 0 ≤ t < T  
0 otherwise, 

1 − |n − N/2| /(N/2) 0 ≤ n < N  
wn = 

0	 otherwise. 

Hanning Window This is a smoothly tapered window 

0.5 (1.0 + cos(π(t − T/2)/(T/2))) 0 ≤ t < T  
w(t) =  

0	 otherwise, 

0.5 (1.0 + cos(π(n − N/2)/(N/2))) 0 ≤ n < N  
wn = 

0	 otherwise. 
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Hamming Window This is a smoothly tapered window that is similar to the Hanning 
window 

0.54 + 0.46 cos(π(t − T/2)/(T/2)) 0 ≤ t < T  
w(t) =  

0 otherwise. 

0.54 + 0.46 cos(π(n − N/2)/(N/2)) 0 ≤ n < N  
wn = 

0 otherwise. 

The magnitude spectra of these three windows are shown below, in linear and logarithmic 
plots for (a) Bartlett, (b) Hanning, and (c) Hamming windows. In each case the spectrum 
is shown in linear and logarithmic (dB) form. The frequency scale is normalized to units 
of line spacing (2π/NΔT ) radians/sec. The spectrum of the implicit rectangular window is 
shown as a dotted line in each case. The various windows are a compromise and trade-off the 
width of the central peak and attenuation of leakage components distant from the peak. For 
example, the Hamming window has greater attenuation of components close to the cental 
peak, while the Hanning window has greater attenuation away from the peak. 
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In each case it can be noted:
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•	 The width of the central lobe is wider than that of the rectangular window, indicating 
that the main lobe will be approximately two lines in width. 

•	 The magnitude of the side-lobes is significantly reduced, indicating that leakage away 
from the main peak will be reduced. 

These two effects are demonstrated in the following two plots. In the first plot there are three 
periods in the data record, and the data set as used has been windowed using a Hanning 
function. In the non-windowed case there would be no leakage but the central peak has now 
been “smeared” to occupy three lines. 
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In the second case the data set contains 3.5 periods of a cosinusoid, and has been windowed 
with a Hanning function. Here it can be seen that the leakage components away from the 
main peak have been significantly attenuated. 
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