MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology
 Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete Fall Term 2008

Lecture $\mathbf{9}^{1}$

Reading:

- Class Handout: Introduction to the Operational Amplifier
- Class Handout: Op-amp Implementation of Analog Filters

1 Operational-Amplifier Based State-Variable Filters

We saw in Lecture 8 that second-order filters may be implemented using the block diagram structure

and that a high-order filter may be implemented by cascading second-order blocks, and possibly a first-order block (if the filter order is odd).

We now look into a method for implementing this filter structure using operational amplifiers.

1.1 The Operational Amplifier

What is an operational amplifier? It is simply a very high gain electronic amplifier, with a pair of differential inputs. Its functionality comes about through the use of feedback around the amplifier, as we show below.

[^0]The op-amp has the following characteristics:

- It is basically a "three terminal" amplifier, with two inputs and an output. It is a differential amplifier, that is the output is proportional to the difference in the voltages applied to the two inputs, with very high gain A,

$$
v_{o u t}=A\left(v_{+}-v_{-}\right)
$$

where A is typically $10^{4}-10^{5}$, and the two inputs are known as the non-inverting $\left(v_{+}\right)$ and inverting (v_{-}) inputs respectively. In the ideal op-amp we assume that the gain A is infinite.

- In an ideal op-amp no current flows into either input, that is they are voltage-controlled and have infinite input resistance. In a practical op-amp the input current is in the order of pico-amps (10^{-12}) amp, or less.
- The output acts as a voltage source, that is it can be modeled as a Thevenin source with a very low source resistance.

The following are some common op-amp circuit configurations that are applicable to the active filter design method described here. (See the class handout for other common configurations).

The Inverting Amplifier:

In the configuration shown above we note

- Because the gain A is very large, the voltage at the node designated summing junction is very small, and we approximate it as $v_{-}=0$ - the so-called virtual ground assumption.
- We assume that the current i_{-}into the inverting input is zero.

Applying Kirchoff's Current law at the summing junction we have

$$
i_{1}+i_{f}=\frac{v_{i n}}{R_{1}}+\frac{v_{o}}{R_{f}}=0
$$

from which

$$
v_{\text {out }}=-\frac{R_{f}}{R_{\text {in }}} v_{\text {in }}
$$

The voltage gain is therefore defined by the ratio of the two resistors. The term inverting amplifier comes about because of the sign change.

The Inverting Summer: The inverting amplifier may be extended to include multiple inputs:

As before we assume that the inverting input is at a virtual ground $\left(v_{-} \approx 0\right)$ and apply Kirchoff's current law at the summing junction

$$
i_{1}+i_{2}+i_{f}=\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}+\frac{V_{\text {out }}}{R_{f}}=0
$$

or

$$
v_{\text {out }}=-\left(\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}\right)
$$

which is a weighted sum of the inputs.
The summer may be extended to include several inputs by simply adding additional input resistors R_{i}, in which case

$$
v_{\text {out }}=-\sum_{i=1}^{n} \frac{R_{f}}{R_{i}} v_{i}
$$

The Integrator: If the feedback resistor in the inverting amplifier is replaced by a capacitor C the amplifier becomes an integrator.

At the summing junction we apply Kirchoff's current law as before but the feedback current is now defined by the elemental relationship for the capacitor:

$$
i_{i n}+i_{f}=\frac{v_{\text {in }}}{R_{\text {in }}}+C \frac{d v_{o u t}}{d t}=0
$$

Then

$$
\frac{d v_{o u t}}{d t}=-\frac{1}{R_{i n} C} v_{i n}
$$

or

$$
v_{\text {out }}=-\frac{1}{R_{\text {in }} C} \int_{0}^{t} v_{\text {in }} d t+v_{\text {out }}(0)
$$

As above, the integrator may be extended to a summing configuration by simply adding extra input resistors:

$$
v_{\text {out }}=-\frac{1}{C} \int_{0}^{t}\left(\sum_{i=1}^{n} \frac{v_{i}}{R_{i}}\right) d t+v_{\text {out }}(0)
$$

and if all input resistors have the same value R

$$
v_{\text {out }}=-\frac{1}{R C} \int_{0}^{t}\left(\sum_{i=1}^{n} v_{i}\right) d t+v_{\text {out }}(0)
$$

1.2 A Three Op-Amp Second-Order State Variable Filter

A configuration using three op-amps to implement low-pass, high-pass, and bandbass filters directly is shown below:

Amplifiers A_{1} and A_{2} are integrators with transfer functions

$$
H_{1}(s)=-\left(\frac{1}{R_{1} C_{1}}\right) \frac{1}{s} \quad \text { and } \quad H_{2}(s)=-\left(\frac{1}{R_{2} C_{2}}\right) \frac{1}{s} .
$$

Let $\tau_{1}=R_{1} C_{1}$ and $\tau_{2}=R_{2} C_{2}$. Because of the gain factors in the integrators and the sign inversions we have

$$
v_{1}(t)=-\tau_{2} \frac{d v_{2}}{d t} \quad \text { and } \quad v_{3}(t)=\tau_{1} \tau_{2} \frac{d^{2} v_{2}}{d t^{2}}
$$

Amplifier A_{3} is the summer. However, because of the sign inversions in the op-amp circuits we cannot use the elementary summer configuration described above. Applying Kirchoff's Current Law at the non-inverting and inverting inputs of A_{3} gives

$$
\frac{V_{i n}-v_{+}}{R_{5}}+\frac{v_{1}-v_{+}}{R_{6}}=0 \quad \text { and } \quad \frac{v_{3}-v_{-}}{R_{4}}+\frac{v_{2}-v_{-}}{R_{1}}=0 .
$$

Using the infinite gain approximation for the op-amp, we set $v_{-}=v_{+}$and

$$
\frac{R_{3}}{R_{3}+R_{4}} v_{3}-\frac{R_{5}}{R_{5}+R_{6}} v_{1}+\frac{R_{4}}{R_{3}+R_{4}} v_{2}=\frac{R_{6}}{R_{5}+R_{6}} V_{i n},
$$

and substituting for v_{1} and v_{3} we generate a differential equation in v_{2}

$$
\frac{d^{2} v_{2}}{d t^{2}}+\left(\frac{1+R_{4} / R_{3}}{\tau_{1}\left(1+R_{6} / R_{5}\right)}\right) \frac{d v_{2}}{d t}+\left(\frac{R_{4}}{R_{3}} \frac{1}{\tau_{1} \tau_{2}}\right) v_{2}=\left(\frac{1+R_{4} / R_{3}}{\tau_{1} \tau_{2}\left(1+R_{5} / R_{6}\right)}\right) V_{i n}
$$

which corresponds to a low-pass transfer function with

$$
H(s)=\frac{K_{l p} a_{0}}{s^{2}+a_{1} s+a_{0}}
$$

where

$$
\begin{aligned}
a_{0} & =\left(\frac{R_{4}}{R_{3}}\right) \frac{1}{\tau_{1} \tau_{2}} \\
a_{1} & =\left(\frac{1+R_{4} / R_{3}}{1+R_{6} / R_{5}}\right) \frac{1}{\tau_{1}} \\
K_{l p} & =\frac{1+R_{3} / R_{4}}{1+R_{5} / R_{6}}
\end{aligned}
$$

A Band-Pass Filter: Selection of the output as the output of integrator A_{1} generates the transfer function

$$
H_{b p}(s)=-\tau_{1} s H_{l p}(s)=\frac{-K_{b p} a_{1} s}{s^{2}+a_{1} s+a_{0}}
$$

where

$$
K_{b p}=\frac{R_{6}}{R_{5}}
$$

A High-Pass Filter: Selection of the output as the output of the summer A_{3} generates the transfer function

$$
H_{h p}(s)=\tau_{1} \tau_{2} s^{2} H_{l p}(s)=\frac{K_{h p} s^{2}}{s^{2}+a_{1} s+a_{0}}
$$

where

$$
K_{h p}=\frac{1+R_{4} / R_{3}}{1+R_{5} / R_{6}}
$$

A Band-Stop Filter: The band-stop configuration may be implemented with an additional summer to add the outputs of amplifiers A_{2} and A (with appropriate weights).

1.3 A Simplified Two Op-amp Based State-variable Filter:

If the required filter does not require a high-pass action (that is, access to the output of the summer A_{1} above) the summing operation may be included at the input of the first integrator, leading to a simplified circuit using only two op-amps shown below:

Consider the input stage:

With the infinite gain assumption for the op-amps, that is $V_{-}=V_{+}$, and with the assumption that no current flows in either input, we can apply Kirchoff's Current Law (KCL) at the node designated (a) above:

$$
i_{1}+i_{f}-i_{3}=\left(V_{i n}-v_{a}\right) \frac{1}{R_{1}}+s C_{1}\left(v_{1}-v_{a}\right)-v_{a} \frac{1}{R_{3}}=0
$$

Assuming $v_{a}=V_{\text {out }}$, and realizing that the second stage is a classical op-amp integrator with transfer function

$$
\begin{gathered}
\frac{V_{\text {out }}(s)}{v_{1}(s)}=-\frac{1}{R_{2} C_{2} s} \\
\left(V_{\text {in }}-V_{\text {out }}\right) \frac{1}{R_{1}}+s C_{1}\left(-R_{2} C_{2} s V_{\text {out }}-V_{\text {out }}\right)-V_{\text {out }} \frac{1}{R_{3}}=0
\end{gathered}
$$

which may be rearranged to give the second-order transfer function

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{1 / \tau_{1} \tau_{2}}{s^{2}+\left(1 / \tau_{2}\right) s+\left(1+R_{1} / R_{3}\right) / \tau_{1} \tau_{2}}
$$

which is of the form

$$
H_{l p}(s)=\frac{K_{l p} a_{0}}{s^{2}+a_{1} s+a_{0}}
$$

where

$$
\begin{aligned}
a_{0} & =\left(1+R_{1} / R_{3}\right) \frac{1}{\tau_{1} \tau_{2}} \\
a_{1} & =\frac{1}{\tau_{2}} \\
K_{l p} & =\frac{1}{1+R_{1} / R_{3}}
\end{aligned}
$$

1.4 First-Order Filter Sections:

Single pole low-pass filter sections with a transfer function of the form

$$
H(s)=\frac{K \Omega_{0}}{s+\Omega_{0}}
$$

may be implemented in either an inverting or non-inverting configuration as shown in Fig. 11.

(a)

(b)

The inverting configuration (a) has transfer function

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=-\frac{Z_{f}}{Z_{\text {in }}}=-\left(\frac{R_{1}}{R_{2}}\right) \frac{1 / R_{1} C}{s+1 / R_{1} C}
$$

where $\Omega_{0}=1 / R_{1} C$ and $K=-R_{1} / R_{2}$.
The non-inverting configuration (b) is a first-order R-C lag circuit buffered by a noninverting (high input impedance) amplifier (see the class handout) with a gain $K=1+$ R_{3} / R_{2}. Its transfer function is

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\left(1+\frac{R_{3}}{R_{2}}\right) \frac{1 / R_{1} C}{s+1 / R_{1} C} .
$$

Classroom Demonstration

Example 2 in the class handout "Op-Amp Implementation of Analog Filters" describes a state-variable design for a 5th-order Chebyshev Type I low-pass filter with $\Omega_{c}=1000 \mathrm{rad} / \mathrm{s}$ and 1 dB ripple in the passband.
The transfer function is

$$
\begin{aligned}
H(s) & =\frac{122828246505000}{\left(s^{2}+468.4 s+429300\right)\left(s^{2}+178.9 s+988300\right)(s+289.5)} \\
& =\frac{429300}{s^{2}+468.4 s+429300} \times \frac{988300}{s^{2}+178.9 s+988300} \times \frac{289.5}{s+289.5}
\end{aligned}
$$

which is implemented in the handout as a pair of second-order two-op-amp sections followed by a first-order block:

This filter was constructed on a bread-board using $741 \mathrm{op}-\mathrm{amps}$, and was demonstrated to the class, driven by a sinusoidal function generator and with an oscilloscope to display the output. The demonstration included showing (1) the approximately 10% ripple in the passband, and (2) the rapid attenuation of inputs with frequency above $157 \mathrm{~Hz}(1000 \mathrm{rad} / \mathrm{s})$.

2 Introduction to Discrete-Time Signal Processing

Consider a continuous function $f(t)$ that is limited in extent, $T_{1} \leq t<T_{2}$. In order to process this function in the computer it must be sampled and represented by a finite set of numbers. The most common sampling scheme is to use a fixed sampling interval ΔT and to form a sequence of length $N:\left\{f_{n}\right\}(n=0 \ldots N-1)$, where

$$
f_{n}=f\left(T_{1}+n \Delta T\right)
$$

In subsequent processing the function $f(t)$ is represented by the finite sequence $\left\{f_{n}\right\}$ and the sampling interval ΔT.

In practice, sampling occurs in the time domain by the use of an analog-digital (A/D) converter.

(i) The sampler (A / D converter) records the signal value at discrete times $n \Delta T$ to produce a sequence of samples $\left\{f_{n}\right\}$ where $f_{n}=f(n \Delta T)$ (ΔT is the sampling interval.

(ii) At each interval, the output sample y_{n} is computed, based on the history of the input and output, for example

$$
y_{n}=\frac{1}{3}\left(f_{n}+f_{n-1}+f_{n-2}\right)
$$

3 -point moving average filter, and

$$
y_{n}=0.8 y_{n-1}+0.2 f_{n}
$$

is a simple recursive first-order low-pass digital filter. Notice that they are algorithms.
(iii) The reconstructor takes each output sample and creates a continuous waveform.

In real-time signal processing the system operates in an infinite loop:

2.1 Sampling

The mathematical operation of sampling (not to be confused with the operation of an analogdigital converter) is most commonly described as a multiplicative operation, in which $f(t)$ is multiplied by a Dirac comb sampling function $s(t ; \Delta T)$, consisting of a set of delayed Dirac delta functions:

$$
s(t ; \Delta T)=\sum_{n=-\infty}^{\infty} \delta(t-n \Delta T)
$$

We denote the sampled waveform $f^{\star}(t)$ as

$$
f^{\star}(t)=s(t ; \Delta T) f(t)=\sum_{n=-\infty}^{\infty} f(t) \delta(t-n \Delta T)
$$

9-10

Note that $f^{\star}(t)$ is a set of delayed and weighted delta functions, and that the waveform must be interpreted in the distribution sense by the strength (or area) of each component impulse. The implied process to produce the discrete sample sequence $\left\{f_{n}\right\}$ is by integration across each impulse, that is

$$
f_{n}=\int_{n \Delta T^{-}}^{n \Delta T^{+}} f^{\star}(t) d t=\int_{n \Delta T^{-}}^{n \Delta T^{+}} \sum_{n=-\infty}^{\infty} f(t) \delta(t-n \Delta T) d t
$$

or

$$
f_{n}=f(n \Delta T)
$$

by the sifting property of $\delta(t)$.

2.2 The Spectrum of the Sampled Waveform $f^{\star}(t)$:

Notice that sampling comb function $s(t ; \Delta T)$ is periodic and is therefore described by a Fourier series:

$$
s(t ; \Delta T)=\frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} e^{j n \Omega_{0} t}
$$

where all the Fourier coefficients are equal to $(1 / \Delta T)$, and where $\Omega_{0}=2 \pi / \Delta T$ is the fundamental angular frequency. Using this form, the spectrum of the sampled waveform $f^{\star}(t)$ may be written

$$
\begin{aligned}
F^{\star}(j \Omega) & =\int_{-\infty}^{\infty} f^{\star}(t) \mathrm{e}^{-j \Omega t} \mathrm{~d} t=\frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \mathrm{e}^{j n \Omega_{0} t} \mathrm{e}^{-j \Omega t} \mathrm{~d} t \\
& =\frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} F\left(j\left(\Omega-n \Omega_{0}\right)\right) \\
& =\frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} F\left(j\left(\Omega-\frac{2 \pi n}{\Delta T}\right)\right)
\end{aligned}
$$

The Fourier transform of a sampled function $f^{\star}(t)$ is periodic in the frequency domain with period $\Omega_{0}=2 \pi / \Delta T$, and is a superposition of an infinite number of shifted replicas of the Fourier transform, $F(j \Omega)$, of the original function scaled by a factor of $1 / \Delta T$.

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

