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Massachusetts Institute of Technology

Department of Mechanical Engineering


2.161 Signal Processing - Continuous and Discrete 
Fall Term 2008 

Lecture 31 

Reading: 

• Class handout: Frequency Domain Methods 

The Fourier Series and Transform 

In Lecture 2 we looked at the response of LTI continuous systems to sinusoidal inputs of the 
form 

u(t) =  A sin(Ωt + φ) 

and saw that the system was characterized by the frequency response function H(jΩ). 
In signal processing work, linear filters are usually specified by a desired frequency re

sponse function. (We will see that often the magnitude function |H(jω)| alone is used to 
specify a filter). The following figure shows the four basic forms of ideal linear filters: 
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In this lecture we generalize the response of LTI systems to non-sinusoidal inputs. We do 
this using Fourier methods. 
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2 Periodic Input Functions - The Fourier Series 

In general, a periodic function is a function that satisfies the relationship: 

x(t) =  x(t + T ) 

for all t, or  x(t) =  x(t + nT ) for n = ±1,±2,±3, . . ., where T is defined as the period. Some 
examples of periodic functions is shown below. 
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The fundamental angular frequency Ω0 (in radians/second) of a periodic waveform is defined 
directly from the period 

2π 
Ω0 = ,

T 
and the fundamental frequency F0 (in Hz) is 

1 
F0 = 

T 

so that Ω0 = 2πF0. 

•	 Any periodic function with period T is also be periodic at intervals of nT for any 
positive integer n. Similarly any waveform with a period of T/n  is periodic at intervals 
of T seconds. 

•	 Two waveforms whose periods, or frequencies, are related by a simple integer ratio are 
said to be harmonically related. 

•	 If two harmonically related functions are summed together to produce a new function 
g(t) =  x1(t) +  x2(t), then g(t) will be periodic with a period defined by the longest 
period of the two components. In general, when harmonically related waveforms are 
added together the resulting function is also periodic with a repetition period equal to 
the fundamental period. 
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Example 1 

A family of waveforms gN (t) (N = 1, 2 . . .  5) is formed by adding together the 
first N of up to five component functions, that is 

N 

gN (t) =  xn(t) 1 < N  ≤ 5 
n=1 

where 

x1(t) = 1  

x2(t) = 	sin(2πt) 
1 

x3(t) =  sin(6πt)
3 
1 

x4(t) =  sin(10πt)
5 
1 

x5(t) =  sin(14πt). 
7 

The first term is a constant, and the four sinusoidal components are harmonically 
related, with a fundamental frequency of Ω0 = 2π rad/s and a fundamental period 
of T = 2π/Ω0 = 1 second. (The constant term may be considered to be periodic 
with any arbitrary period, but is commonly considered to have a frequency of 
zero rad/s.) The figure below shows the evolution of the function that is formed 
as more of the individual terms are included into the summation. Notice that 
in all cases the period of the resulting gN (t) remains constant and equal to the 
period of the fundamental component (1 second). In this particular case, it can 
be seen that the sum is tending toward a square wave as more terms are included. 
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The Fourier series representation of an arbitrary periodic waveform x(t) (subject to some 
general conditions described later) is as an infinite sum of harmonically related sinusoidal 
components, commonly written in the following three equivalent forms 

∞
1 

x(t) =  a0 + (an cos(nΩ0t) +  bn sin(nΩ0t)) (1)
2 

n=1 
∞ 

1 
= a0 + An sin(nΩ0t + φn) (2)

2 
n=1 

+∞ 

= XnejnΩ0t . (3) 
n=−∞ 

In each representation knowledge of the fundamental frequency Ω0, and the sets of Fourier 
coefficients {an} and {bn} (n = 0  . . .∞), or {An} and {φn}) (n = 0  . . .∞), or {Xn} (n = 
−∞ . . .∞) is sufficient to completely define the waveform x(t). 

These representations are related by 

An = a2 
n + b2 

n 

φn = tan−1(an/bn). 

and 

Xn = 1/2(an − jbn) 

X−n = 1/2(an + jbn) 

See the class handout for details. 
The spectrum of a periodic waveform is the set of all of Fourier coefficients in any of 

the representations, for example {An} and {φn}, expressed as a function of frequency. Be
cause the harmonic components exist at discrete frequencies, periodic functions are said to 
exhibit line (or discrete) spectra, and it is common to express the spectrum graphically with 
frequency Ω as the independent axis, and with the Fourier coefficients plotted as lines at 
intervals of Ω0. The first two forms of the Fourier series, based upon Eqs. (??) and (??), 
generate “one-sided” spectra because they are defined from positive values of n only, whereas 
the complex form defined by Eq. (??) generates a “two-sided” spectrum because its summa
tion requires positive and negative values of n. The figure below shows a complex spectrum 
(Eq. ??). 
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2.1 Computation of the Fourier Coefficients 

Section (2.1) of the class handout derives the finite (truncated) Fourier series as a least-
squares approximation to the periodic function x(t). The results show that for the complex 
representation 

1 t0+T 

Xn = xp(t)e −jnΩ0tdt,
T t0 

and for the real representation 

2 
� t0+T 

an = x(t) cos(nΩ0t)dt 
T t0 

2 
� t0+T 

bn = x(t) sin(nΩ0t)dt. 
T t0 

The results are summarized in the following table: 

Sinusoidal formulation Exponential formulation 

Synthesis: x(t) =  
1 
2 
a0 + 

∞ � 

n=1 

(an cos(nΩ0t) +  bn sin(nΩ0t)) x(t) =  
+∞ � 

n=−∞ 

Xne
jnΩ0t 

Analysis: an 

bn 

= 
2 
T 

� t1+T 

t1 

x(t) cos(nΩ0t)dt 

= 
2 
T 

� t1+T 

t1 

x(t) sin(nΩ0t)dt 

Xn = 
1 
T 

� t1+T 

t1 

x(t)e −jnΩ0tdt 
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2.2 Properties of the Fourier Series 

The following are some of the important properties of the Fourier series: 

(1) Existence of the Fourier Series	 For the series to exist, the Fourier analysis integral 
must converge. A set of three sufficient conditions, known as the Dirichelet conditions, 
guarantee the existence of a Fourier series for a given periodic waveform x(t). They 
are 

• The function x(t) must be absolutely integrable over any period, that is 

� t0+T 

|x(t)| dt < ∞ 
t0 

for any t0. 

•	 There must be at most a finite number of maxima and minima in the function 
x(t) within any period. 

•	 There must be at most a finite number of discontinuities in the function x(t) 
within any period, and all such discontinuities must be finite in magnitude. 

These requirements are satisfied by almost all waveforms found in engineering practice. 
The Dirichelet conditions are a sufficient set of conditions to guarantee the existence 
of a Fourier series representation. They are not necessary conditions, and there are 
some functions that have a Fourier series representation without satisfying all three 
conditions. 

(2) Linearity of the Fourier Series Representation	 The Fourier analysis and synthe
sis operations are linear. Consider two periodic functions g(t) and h(t) with identical 
periods T , and their complex Fourier coefficients 

1 
� T 

Gn = g(t)e −jnΩ0tdt 
T 0 

1 
� T 

Hn = h(t)e −jnΩ0tdt 
T 0 

and a third function defined as a weighted sum of g(t) and h(t) 

x(t) =  ag(t) +  bh(t) 

where a and b are constants. The linearity property, which may be shown by direct 
substitution into the integral, states that the Fourier coefficients of x(t) are 

Xn = aGn + bHn, 

that is the Fourier series of a weighted sum of two time-domain functions is the weighted 
sum of the individual series. 
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(3) Even and Odd Functions	 If x(t) exhibits symmetry about the t = 0 axis the Fourier 
series representation may be simplified. If x(t) is an even function of time, that is 
x(−t) =  x(t), the complex Fourier series has coefficients Xn that are purely real, with 
the result that the real series contains only cosine terms, so that Eq. (??) simplifies to 

∞
1 

x(t) =  a0 + an cos(nΩ0t). 
2 

n=1 

Similarly if x(t) is an odd function of time, that is x(−t) =  −x(t), the coefficients Xn 

are imaginary, and the one-sided series consists of only sine terms: 

∞ 

x(t) =  bn sin(nΩ0t). 
n=1 

Notice that an odd function requires that x(t) have a zero average value. 

(4) The Fourier Series of a Time Shifted Function	 If the periodic function x(t) has 
a Fourier series with complex coefficients Xn, the series representing a “time-shifted” 
version g(t) =  x(t + τ) has coefficients e−jnΩ0τXn. If  

then


1 
� T 

Xn = x(t)e −jnΩ0tdt 
T 0 

1 
� T 

Gn = f(t + τ)e −jnΩ0tdt. 
T 0 

Changing the variable of integration ν = t + τ gives 

1 τ+T 

Gn = f(ν)e −jnΩ0(ν−τ)dν 
T τ 

jnΩ0τ 1 
� τ+T 

−jnΩ0νtdν= e f(ν)e 
T τ 

jnΩ0τXn.= e

If the nth spectral component is written in terms of its magnitude and phase 

xn(t) =  An sin(nΩ0t + φn) 

then 

xn(t + τ) =  An sin (nΩ0(t + τ ) +  φn) 

= An sin (nΩ0t + φn + nΩ0τ ) . 

The additional phase shift nΩ0τ , caused by the time shift τ , is directly proportional 
to the frequency of the component nΩ0. 
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(5) Interpretation of the Zero Frequency Term	 The coefficients X0 in the complex 
series and a0 in the real series are somewhat different from all of the other terms for 
they correspond to a harmonic component with zero frequency. The complex analysis 
equation shows that 

1 
� t1+T 

X0 = x(t)dt 
T t1 

and the real analysis equation gives 

1 1 
� t1+T 

a0 = x(t)dt 
2 T t1 

which are both simply the average value of the function over one complete period. 

If a function x(t) is modified by adding a constant value to it, the only change in its 
series representation is in the coefficient of the zero-frequency term, either X0 or a0. 

2.3 The Response of Linear Systems to Periodic Inputs 

Consider a linear single-input, single-output system with a frequency response function 
H(jΩ). Let the input u(t) be a periodic function with period T , and write it in terms 
of a real Fourier series: ∞

1 
u(t) =  a0 + An sin(nΩ0t + φn)

2 
n=1 

The nth real harmonic input component, un(t) =  An sin(nΩ0t + φn), generates an output 
sinusoidal component yn(t) with a magnitude and a phase that is determined by the system’s 
frequency response function H(jΩ): 

yn(t) =  |H(jnΩ0)| An sin(nΩ0t + φn + � H(jnΩ0)). 

The principle of superposition states that the total output y(t) is the sum of all such com
ponent outputs, or 

∞ 

y(t) =  yn(t)

n=0


∞
1 

=	 a0H(j0) + An |H(jnΩ0)| sin (nΩ0t + φn + � H(jnΩ0)) ,
2 

n=1 

which is itself a Fourier series with the same fundamental and harmonic frequencies as the 
input. The output y(t) is therefore also a periodic function with the same period T as 
the input, but because the system frequency response function has modified the relative 
magnitudes and the phases of the components, the waveform of the output y(t) differs in 
form and appearance from the input u(t). 

In the complex formulation the input waveform is decomposed into a set of complex 
exponentials un(t) =  Une

jnΩ0t . Each such component is modified by the system frequency 
response so that the output component is 

yn(t) =  H(jnΩ0)Une
jnΩ0t 
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and the complete output Fourier series is


∞ ∞ 

y(t) =  yn(t) =  H(jnΩ0)Une
jnΩ0t . 

n=−∞ n=−∞ 
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The system H(jΩ) acts as a frequency-domain filter and modifies the input wave
form u(t) by (1) selectively amplifying/attenuating the spectral components, and (2) 
applying a frequency dependent phase shift. 

See the class handout for examples. 

3 Aperiodic Input Functions - The Fourier Transform 

Many waveforms found in practice are not periodic and therefore cannot be analyzed directly 
using Fourier series methods. A large class of system excitation functions can be character
ized as aperiodic, or transient, in nature. These functions are limited in time, they occur 
only once, and decay to zero as time becomes large. 

Consider a function x(t) of duration Δ that exists only within a defined interval t1 < t ≤ 
t1 + Δ, and is identically zero outside of this interval. We begin by making a simple assump
tion; namely that in observing the transient phenomenon x(t) within any finite interval that 
encompasses it, we have observed a fraction of a single period of a periodic function with a 
very large period; much larger than the observation interval. Although we do not know what 
the duration of this hypothetical period is, it is assumed that x(t) will repeat itself at some 
time in the distant future, but in the meantime it is assumed that this periodic function 
remains identically zero for the rest of its period outside the observation interval. 

The analysis thus conjectures a new function xp(t), known as a periodic extension of x(t), 
that repeats every T seconds (T > Δ), but at our discretion we can let T become very large. 
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As observers of the function xp(t) we need not be concerned with its pseudo-periodicity 
because we will never be given the opportunity to experience it outside the first period, and 
furthermore we can assume that if xp(t) is the input to a linear system, T is so large that the 
system response decays to zero before the arrival of the second period. Therefore we assume 
that the response of the system to x(t) and xp(t) is identical within our chosen observation 
interval. The important difference between the two functions is that xp(t) is periodic, and 
therefore has a Fourier series description. 

The development of Fourier analysis methods for transient phenomena is based on the 
limiting behavior of the Fourier series describing xp(t) as the period T approaches infinity. 
The derivation proceeds in the following steps (see the class handout for details). 

(1) The waveform xp(t) is described by a Fourier series with lines spaced at intervals 

2π 
Ω0 = 

T 

and coefficients 
t0+T1 

�
Xn = xp(t)e

−jnΩ0tdt 
T t0 

(2) From the synthesis equation (with t0 = −T/2) 

∞ 
jnΩ0t xp(t) = 

� 
Xne 

n=−∞ 
� T/2 

�∞ 
�

Ω0 jnΩ0t = 
� 

xp(t)e
−jnΩ0tdt e 

2π −T/2n=−∞ 

The figure below shows how the line spectrum varies as the period T changes. Note that 
the shape of the envelope defining the spectrum is unaltered, but the the magnitude 
and the line spacing changes. 
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(c)	 The period T is now allowed to become arbitrarily large, with the result that the fun
damental frequency Ω0 becomes very small and we write Ω0 = δΩ. We define x(t) as 
the limiting case of xp(t) as T approaches infinity, that is 

x(t)	 = lim xp(t)
T →∞ 

∞ 
1 

�� T/2 

(t)e−jnδΩtdt 

� 
jnδΩtδΩ= lim 

� 
xp e 

T →∞ 2π −T/2n=−∞� ∞ 1 
�� −∞ � 

= x(t)e−jΩtdt ejΩtdΩ	 (4)
2π−∞ −∞ 

where in the limit the summation has been replaced by an integral. 

(d)	 If the function inside the braces is defined to be X(jΩ), Eq. (??) may be expanded into 
a pair of equations, known as the Fourier transform pair: 

� ∞
X(jΩ) = x(t)e−jΩtdt 

−∞� ∞1
x(t) = X(jΩ)ejΩtdΩ 

2π −∞ 

which are the equations we seek. 

(To be continued in Lecture 4) 
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