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11 Informative Data Sets and Consistency 

11.1 Informative Data Sets 
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Definition1 Two models W1(q) and W2(q) are equal if frequency functions 
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for almost all πωπω ≤≤−  
 

Definition2  A quasi-stationary data set ∞Z is informative enough with respect to model 
structure M if, for any two models in M 
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Let us characterize a quasi-stationary data set ∞Z by power spectrum )(ωvΦ (Spectrum 
Matrix): 
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Theorem 1  A quasi-stationary data set ∞Z  is informative if the spectrum matrix for 

is strictly positive definite for almost all Ttytutz ))(),(()( = ω . 
Proof 
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Using eq.11 of Lecture Note 17, (3) can give by 
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Since )(ωzΦ is strictly positive definite for almost all πωπω ≤≤− , the above 
integral becomes zero only when the vector of the quadratic form, W1-W2, is zero for 
almost all ω . Namely, 
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Remark: Theorem 1 applies to an arbitrary linear model set. As long as the spectrum 
matrix  )(ωzΦ is strictly positive definite, the data set can distinguish any two linear 
mocels, regardless of model structure, ARX,OE etc. Also this applies to closed-loop 
systems, where 0)( ≠Φ ωuy . 
 

11.2 Consistency of Prediction Error Based Estimate 

The prediction-error estimate is defined as 
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The original problem is to find that minimizes the expected (ensemble mean) squared 
prediction error: 
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However, the erogicity: 
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Holds if, (the following conditions are for mathematical rigor) 
1) the model structure is uniformly (in θ ) stable and linear, 
2)  {y(t),u(t)} are jointly quasi-stationary, 
3) y(t) and u(t) are generated with uniformly stable filters, and 
4) y(t) and u(t) are driven by 

• bounded, deterministic inputs, and/or 
• independent random variables with zero means bounded moments of  

 
True System 
Let us assume that the actual data are generated by the following “true system” 
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Where Ho(q) is inversely stable( inverse is also stable) and monic, and {eo(t)} is a 
sequence of random variables with zero mean values, variances λ0  and bounded moments 
of order 4+δ. 
 
When the true system is involved in a model structure 
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The following set of model parameters equal to the true system is not empty: 
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Theorem 2  Let M be a linear, uniformly stable model structure containing a true system 

. If a quasi-stationary data set MS∈ ∞Z   is informative enough with respect to M, then 
the prediction errors estimate is consistent: 
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If, in addition, the parameter of the true system is unique, { }0),( θ=MSDT  ,then  
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Proof   Consider the difference between )()( 0θθ VV = for arbitrary MD∈θ  and the true 
system’s parameter vector 0θ , 
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Compute ),( 0θε t using the true system assumption (11) 
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There )(),( 00 tet =θε is an independent random variable of zero mean values. In (A) is 
given by is given by ),(),( 0θεθε tt −
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which depends on 1−tZ , the input-output data upto t-1. 
Therefore, it is uncorrelated with e(t), i.e. (A)=0. 
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From Theorem 1, since ∞Z is informative enough, as long as the two models 
corresponding to θ and 0θ are different ( )[ ] 0)(ˆ)(ˆ 2

0 >− θθ tytyE . This means that  
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11.3 Frequency Domain Analysis of Consistency  

Using eq.(11), the mean prediction error can be written as  
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where ),( θωεΦ is the power spectrum of the prediction error { }),( θε t . Based on the true 
system description (11) 
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For an open-loop system with 0)( =Φ ωeu  
It follows directly from (21) and (23) that, if there exist the parameter vector such that 

and , then such 00
GG =θ 00

HH −θ 0θ minimizes )(θV , the equivalent result to Theorem 2. 
 
Consider a case that noise model ),( θqH has been known as fixed : . 
The minimization of 
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Remarks: 
 

• The model ),( θqG  is pushed towards the true system Go(q) in such a way that the 
weighted mean squared difference in the frequency domain be minimized. 

• The weight, 2* )(
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ω

ω
i

u
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Φ , is the ratio of the input power spectrum to the noise 

power spectrum(if the variance of eo(t) is unity). In other words, it is a signal-to-
noise ratio. 
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