2.160 System Identification, Estimation, and Learning Lecture Notes No. 14
 April 10, 2006

8.4 The Error Back Propagation Algorithm

The Multi-Layer Perception is a universal approximation function that can approximate an arbitrary (measurable) function to any accuracy.

Layer 2

$w_{j i}^{(m)}=$ weight of the connection from unit i to unit j in layer m
$y_{j}^{(m)}=$ output from unit j in layer m
$x_{i}^{(m)}=$ input to a unit in layer m from unit i
Forward computation

$$
\begin{align*}
& z_{j}^{(m)}=\sum_{i} w_{j i}^{(m)} x_{i}^{(m)} \tag{19}\\
& y_{j}^{(m)}=g_{j}\left(z_{j}^{(m)}\right)=x_{j}^{(m+1)} \tag{20}
\end{align*}
$$

$$
m=0,1,2, \ldots
$$

Starting from $m=0$, all the units can be computed recursively until $m=M$, output layer.
How do we train the multi-layer perceptron, given training data presented sequentially?
Note: Multi-Layer Perceptrons with nonlinear activation functions, $g(z)$, are nonlinear in parameters w.

- A single-layer neural net is essentially linear in w, although $g(z)$ is nonlinear.
- If two consecutive layers have linear activation functions, they can be combined and replaced by a single layer network.

To be able to deal with nonlinear problems, such as the XOR problem, we now focus on a multi-layer perceptron with nonlinear activation functions.

The theory of stochastic approximation is not applicable, since the parameters are not linearly involved in the predictor. However, the Gradient Descent Method (The WidrowHoff algorithm) can be extended to multi-layer perceptrons.

The algorithm is called the Error Backpropagation Algorithm.

Example

Consider a three-layer perceptron in order to derive a basic formula of error backpropagation.

Layer 0
Layer 1
Layer 2
Layer 3
unit 3
unit 1
unit 2

Gradient Descent

$$
\begin{align*}
& \Delta w_{53}=-\rho g r a d_{w_{53}} E \\
& =-\rho \frac{\partial E}{\partial y_{5}} \frac{d y_{5}}{d z_{5}} \frac{\partial z_{5}}{\partial w_{53}} \tag{21}\\
& =-\rho \frac{(\hat{y}-y) g_{5}^{\prime}\left(z_{5}\right) \cdot x_{3}=\rho \delta_{5} x_{3}}{\|} \\
& \quad-\delta_{5}=\frac{\partial E}{\partial z_{5}}
\end{align*}
$$

$$
\begin{gather*}
\Delta w_{32}=-\rho g r a d_{w_{32}} E \\
=-\rho \frac{\partial E}{\partial y_{5}} \frac{d y_{5}}{d z_{5}} \frac{\partial z_{5}}{\partial x_{3}} \frac{\partial x_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{32}} \tag{22}\\
=\frac{w_{53}}{\frac{d g_{3}}{d z_{3}}} \\
\delta_{53} g_{3}^{\prime}\left(z_{3}\right) x_{2}
\end{gather*}
$$

Likewise,

$$
\begin{gather*}
\Delta w_{42}=\rho \frac{\rho \delta_{5} w_{54} g_{4}^{\prime}\left(z_{4}\right)}{\| I} x_{2} \tag{23}\\
\delta_{4}
\end{gather*}
$$

$$
\begin{align*}
& \Delta w_{21}=-\rho g r a d_{w_{21}} E: \text { There are two routes between } z_{5} \text { and } w_{21} . \\
& \quad=-\rho \frac{\partial E}{\partial z_{5}}\left(\frac{\partial z_{5}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}} \frac{\partial x_{2}}{\partial w_{21}}+\frac{\partial z_{5}}{\partial x_{4}} \frac{\partial x_{4}}{\partial x_{2}} \frac{\partial x_{2}}{\partial w_{21}}\right) \\
& \quad=\rho\left(\frac{\delta_{5} w_{53} g_{3}^{\prime}\left(z_{3}\right) w_{32}+\frac{\left.\delta_{5} w_{54} g_{4}^{\prime}\left(z_{4}\right) w_{42}\right) \frac{\partial y_{2}}{\partial w_{21}}}{\|}}{\delta_{3}}\right. \tag{24}\\
& \quad=\rho\left(\delta_{3} w_{32}+\delta_{4} w_{42}\right) g_{2}^{\prime}\left(z_{2}\right) x_{1}
\end{align*}
$$

The above computation can be streamlined by computing δ_{j}, starting from the final layer back to the first layer.

Error $(\hat{y}-y)$ is propagated backward... Error Backpropagation
In general,
For the final layer, $m=M$,

$$
\begin{align*}
& \Delta w_{j i}^{(M)}=\rho \delta_{j}^{(M)} x_{i}^{(M)} \tag{25}\\
& \delta_{j}^{(M)}=\left(y-\hat{y}^{(M)}\right) g_{j}^{\prime(M)}\left[z_{j}^{(M)}\right] \tag{26}
\end{align*}
$$

For hidden layers, $1 \leq m \leq M-1$

The Error Backpropagation Algorithm
[Wabos 1974, 1994] [Rumelhart, Hinton, \& Williams,1986]
Forward Input Propagation
Move from $m=1$ to M

$$
\begin{equation*}
z_{j}^{(m)}=\sum_{j} w_{j i}^{(m)} x_{i}^{(m)}, y_{j}^{(m)}=g_{j}\left(z_{j}^{(m)}\right)=x_{j}^{(m+1)} \tag{29}
\end{equation*}
$$

Error Back propagation

$$
\begin{align*}
\delta_{j}^{(m)}= & g_{j}^{\prime}\left(z_{j}^{(m)}\right) \sum_{k} \delta_{k}^{(m+1)} w_{k j}^{(m+1)} \tag{30}\\
& \delta_{n}^{(M)}=\left(y-\hat{y}^{(M)}\right) g_{n}^{\prime}\left(z_{n}^{(M)}\right)
\end{align*}
$$

8.5 Stabilizing Techniques

1). Properties of the sigmoid function

$$
g^{\prime}(z)=\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}=\frac{1}{1+e^{-z}}\left(1-\frac{1}{1+e^{-z}}\right)=g(1-g)
$$

$$
\Delta w_{j i}=\rho \delta_{j}^{(m)} x_{i}^{(m)}
$$

$\delta_{j}^{(m)}=g_{j}^{\prime} \sum_{k} \delta_{k}^{(m+1)} w_{k j}^{(m+1)}$
(33) $\Delta w_{j i} \propto g_{j}^{\prime}\left(z_{j}\right)$

The incremental weight change is proportional to the derivative of $g(z)$.

For $-\infty<z<\infty$.
g varies $0<g<1$.
$\operatorname{Max} g^{\prime}=1 / 4$
at $z=0 \quad g=0.5$

In these ranges weight changes are small.
$g \cong 0$ or $g \cong 1$
$|z| \gg 1$.
$z_{j}=\sum_{i} w_{j i} x_{i}$
Once the unit (j) has committed to take an output value of either " 0 " or " 1 ", the weight $w_{j i}$ will no longer change very much for that inputs.

These features contribute to stabilizing the learning process
2) Smoothing by adding a momentum term

Ravine: a typical failure scenario of convergence

3) How to get rid of local minima

- Increase the number of hidden units
- Randomize the initial weights and repeat learning, then take the best one.

