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8. Neural Networks 

8.1 Physiological Background 
Neuro-physiology 

• A Human brain has approximately 14 billion neurons, 50 different kinds of 
neurons. … uniform 

• Massively-parallel, distributed processing 
            Very different from a computer (a Turing machine)

Image removed due to copyright reasons.

  
 

 

 
 
 

McCulloch and Pitts, Neuron Model 1943 
Donald Hebb, Hebbian Rule, 1949 
…Synapse reinforcement learning  
Rosenflatt,  1959 
…The perceptron convergence theorem 
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8.2 Stochastic Approximation 

consider a linear output function for )(ˆ zgy = : 
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It is a type of batch processing. 
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A simpler method is to execute updating the weight iw∆  every time the training data is 
presented. 
 
(8) [ ] ][][ kxkkw ii ρδ=∆     for the k-th presentation 
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Correct output for the 
training data presented 
at the k -th time 

Predicted output based on the 
weights [ ]kw for the training data 
presented at the -th time 
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Learning procedure 
Present all the N training data in any sequence, and repeat the N presentations, called an 
“epoch”, many times… Recycling. 
 
 
 
 
 
 
 
 
 

N predictions 
[ ] [ ]( ) [ ] [ ]( )1 , 1 ... , .x y x N y N  

   epoch p    epoch 4    epoch 3    epoch 2    epoch 1 

This procedure is called the Widrow-Hoff algorithm. 
Convergence:  As the recycling is repeated infinite times, does the weight vector             

converge to the optimal one: ?... Consistency )...(minarg 1 nNw
wwJ

    
If a constant learning rate 0>ρ is used, this does not converge, unless  0min =NJ
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If the learning rate is varied, eg. constant
k k

ρ = , convergence can be guaranteed.  

This is a special case of the Method of Stochastic Approximation. 
 
Expected Loss Function 
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The stochastic approximation procedure for minimizing this expected loss function with 
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Where is the training data presented at the k -th iteration.  This estimate is proved 
consistent if the learning rate 

[ ]kx
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This condition prevents all the 
weights from converging so fast 
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This condition ensures that random 

that error will remain forever 
uncorrected. 

2k

[ ] +∞=∑
=

∞→ ik
i

1

lim ρ  
;  0])][[( 2
0 =− ii wkwE

estimated weights converge to their optimal values with probability of 1. 

fluctuations are eventually 
suppressed 

    Robbins and Monroe, 1951 

tic Approximation method in general needs more presentation of data, i.e. the 
e process is slower than the batch processing.  But the computation is very 

ayer Perceptrons 
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Can a single neural unit (perceptron) 
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XOR truth table? 
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 No, it cannot 

4



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

g

1 

2x  

1x  

Class 1 

z

)(zg  

1

2x

1x

iw

2w

1w

∑

Class 0 
 
(15)    32211 wxwxwz ++=

Set z=0, then  represents a straight line in the 1 1 2 2 30 w x w x w= + + 1 2x x−  plane. 
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Consider a nonlinear function in lieu of (15) 
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This is apparently a linear function: Linearly Separable. 
 
 
 

 5



Hidden Units 
• Augment the original input patterns 
• Decode the input and generate tan internal representation 
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Hidden Unit 
Not directly visible from output 

Extending this argument, we arrive at a multi-layer network having multiple hidden 
layers between input and output layers. 
 
Multi-Layer Perception 
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