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6.5 Times-Series Data Compression 

y ( t )) 

b 3b 2 

b 1 

FIR 
u( t 

tFinite Impulse Response Model 

Consider a FIR Model 

( ( ( (t y ) = t u b − 1) + t u b − 2) ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ b t u − m )1 2 m 

The transfer functions of (11) are then: G (q ) = q B ), H (q ) = 1( 

One-Step-Ahead Predictor 
− 1 (ı( − 1 ) (t y θ ) = H (q )G ( t u q ) + [ 1 − H (q )] t y ) 

) (= G ( t u q ) 

Tt y θ ) =ϕ (t )θ : linear regression ı( 

Given input data { t u 1 ), ≤ Nt }, the least square estimate of the parameter vector ( ≤ 

was obtained as 
N

ıLS 1 ( ı( − 1θ N = min arg ∑ 
1 ( t y ) − t y |θ )) 

2 

= ( R ( N )) f (N ) (40)
θ N t = 1 2 

where 
N N 

T 1 ) (R (N ) = 
1 ∑ϕ (t )ϕ (t ) = ΦΦ T and f ( N ) = ∑ϕ ( t y t ) (41)
N t = 1 N t = 1 

Pro’s and Con’s of FIR Modeling 
Pros. 

LS (LSE gives a consistent estimate θ N = θ 0 
as long as the input sequence { t u )} is lim ı 

N →∞

uncorrelated with the noise e(t) , which may be colored. 

Cons 
Two failure scenarios 

• The impulse response has a slow decaying mode 
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• The sampling rate is high 
The number of parameters, m, is too large to estimate. 
The persistently exciting condition rank = Φ rank full can hardly be satisfied. 
Check the eigenvalues of ΦΦT (or the singular values of Φ ) 

λ ≥ λ2 ≥ � ≥ λ1 m

It is likely 

λ ≥ λ ≥ � ≥ λ ≥ λn+1 ≅0 = � = λ1 2 n m 

Often m becomes more than 50 and it is difficult to obtain such an input series having 
50 non-zero singular values. 

Time series data compression is an effective method for coping with this difficulty. 
Before formulating the above least square estimate problem, data are processed so 
that the information contained in the series of regressor may be represented in 
compact, low-dimensional form. 
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6.6 Continuous-Time Laguerre Series Expansion 

Let us begin with continuous-time Laguerre expansion. 

[Theorem 6.6]

Assume a transfer function G(s) is


(
• Strictly proper lim s G ) = 0 G(∞ ) = 0	 (45)
s ∞ → 

• Analytic in Re(s) > 0 No pole on RHP 

• Continuous in Re(s) ≥ 0 

Then, there exists a sequence { gk } such that 

∞ 2a ⎛ s − a ⎞ 
k − 1 

(s G ) = ∑ gk ⎜	 ⎟ (46) 
k = 1 s + a ⎝ s + a ⎠ 

where a > 0 

Proof:

Consider the transformation given by


s + a z =	 (47)
s − a


sz − az = s + a
 ( (z s − 1) = z a + 1)

z + 1Bilinear transformation ∴ s = a	 (48)
z − 1 

Im Im s + a 
z = = 1 for s = jω (42)s s − as − a z-plane 

1 
∠ z = ∠ (s + a ) −∠ (s − a ) 

-1 1 
Re Re 

s − a s s + a	 The imaginary axis is 
mapped to the unit circle. 

s + a 
> 1 (43)	 The right half plane is z = 

mapped to the outside of 
the unit circle. 

s − a 
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)(zG 
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G(s) 0)Re( > s 
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⎟
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⎠

⎞ 

⎜
⎜
⎜ 

⎝

⎛ 

−
+ 

= 

s 

z 
z aGzG 

1 
1)( (44) is analytic 

the unit circle. 

Im 

Re 

Im 

Re 

 is analytic in 

Consider 
��� 

outside


Therefore, there exists a Laurent expansion for G (z ) :


∞

∑ k − G z > 1 (49)( )z z gk =

= k 1 

+
s aConsidering that G (∞ )
=
 G0 lim 1 ∴
 ( )
 0 at z=1 z =
 = 
− ∞ → s as 

∞

∑ 
1 
2a 

k − 1)− 1z − (G (50)( ) (1−
 )
z z gk =

= k 1 

Substituting (40) into (46) 
− (k − 1)∞ 1
 − 

+ 
⎛
⎜
⎝ 

⎞
⎟
⎠


⎛
⎜
⎝


⎞
⎟
⎠ 

+ +
s
 a
 s


s
 = 

a 
a 1 

s a
∑
G s G )( =
 (1
−
 ) g k = 

− as 

− −
2s a s aa
 k 
(k − 1)2a g k s 

∞ ⎛
⎜
⎝


⎞
⎟
⎠

∑ s G )(∴
 =

+
 s
+
a
 ak = 1 

2 sa (k − 1)

⎟ 
⎠
⎞ 

+
− 

a 
a 

as 
as 

+
− 1= 

+
− 

aj 
aj 

ω
ω All-pass Filter 

The Laplace transform of the Laguerre functions 

⎛
⎜
⎝


Lk (s ) =
 (51)
s +
a s 

Low Pass Filter 

The Main Point 
The above Laguerre series expansion can be used for data compression if the 

parameter a , called a Laguerre pole, is chosen such that slow poles, i.e. dominant 
poles, of the original system are close to the Laguerre pole. Let pi be a slow real pole 
of the original transfer function G (s ). If the Laguerre pole a is chosen such that 
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a ≅ pi , then a truncated Laguerre expansion: 

n 

(G (s) = ∑ g 2a ⎛
⎜

s − a ⎞
⎟

k − 1 

→ s G ) (52)n k 
k = 1 s + a ⎝ s + a ⎠ 

converges to the original G(s) quickly. 

- Recall -

For a continuous-time system, a pole close to the imaginary axis is slow to converge,

while a pole far from the imaginary axis converges quickly. Likewise, in discrete time, 

a pole close to the origin of a z-plane quickly converges, while the ones near the unit

circle are slow.


s-plane Im z-plane 

Fast Fast Slow Re Slow 

Choose a such that p1 −≅
 a , where p1 is a slow, stable pole. Using the bilinear 
transform, this slow pole in the s-plane can be transferred to a fast pole in the z-plane, 
as shown below. Representing in the z-plane, the transfer function can be truncated; 
just a few terms can approximate the impulse response since it converges quickly. 

-1 

1 

1 

-1 
0≅z 

{ }kg 

as 
as z 

− 

+ 
= 

1p 

1pa ≅ 

Im 

Re 
time 

Truncated 

Fast pole 

Fast Convergence 

Im 

Re 

Transformation 

When the original transfer function has many poles, the Laguerre pole is placed near 
the dominant pole so that most of the slow poles may be approximated by the 
Laguerre pole. 
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a− 

z 

-1 

1 

1 

Dominant pole 

Im 

Re 

In the transformed plane, all 
the poles are confined within 
a circle of radius r<1. 

Im 

Re 

With the bilinear transform, these slow poles are transferred to the ones near the 
origin of the z-plane. They are fast, hence the transfer function can be approximated 
to a low order model. 

6.7 Discrete-Time Laguerre Series Expansion 

[Theorem 6.7]

Assume that a Z-transform G(z) is


• Strictly proper G(∞) = 0 

• Analytic in z > 1 RHP 

• Continuous in z ≥ 1 

Then 
∞ K ⎛ 1 − az ⎞

k −1 

(s G ) = ∑ gk ⎜ ⎟ (53) 
k =1 z − a ⎝ z − a ⎠ 

where -1<a<1 and 

TaK )1( 2−= (54) 

Proof 
Consider the bilinear transformation: 

z − a w = (55)
1 − az


(
w − azw = z − a w + a = aw z + 1) therefore, z = 
w + a (56)
aw + 1 
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Transformation


⎜ 
⎝
⎛ 

+ 

+ 
= 

1
)( 

aw 
awGwG 

az 
az w 

− 

− 
= 

1z -plane w-plane 

1>z 
1>w 

⎞
⎟
⎠


G
⎛⎜
⎝


w
+
a 
aw
+
1


⎞
⎟
⎠


G(∞
) =
0G is analytic in w > 1, and is proper(w) =


1 
∞→ a 

1 
a 

G
(
lim
 −=
 ) )0 (57=− w 
z 

Therefore 
∞

∑T


K

−k 1−1) −( )G (58)( ) (a
+
w w
 wgk =


=k 1 

−(k−1)∞

∑T


K


−
 1
−
 −⎛
⎜
⎝ 

⎞
⎟
⎠

=
 gk 

⎛
⎜
⎝


⎞
⎟
⎠


z a az z a( zG ) G (a ) (59)+= 
1
−
 −
 1
−
az z =a 1 azk 

−k 1∞ K 1−
⎛
⎜
⎝


⎞
⎟
⎠


az
∑∴ sG )( (53)gk z 
=


−
 −
a
 z ak=1 

Q.E.D. 

Now we can write 
( ) (tuqGty )( )=


−k 1
K ⎛
 ⎞
1
−
aq
n n 

∑
 ∑
 Lgk k ) (( tuq )tu )( =
gk =
 ⎜⎜
⎝


⎟⎟
⎠− q
−
aq a
=k 1 =k 1 

where Lk (q), k =
 ,1 � is a series of filters. Once the original input data are filtered
, n 
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( = ,1 �,with qL ), nk ,k 

) (xk = Lk ( t u q ), k = ,1 �, n (60) 

The output t y ) is represented as a moving average of the transformed input xk ,(

that is, a FIR model. 

1xL1(q) 

L2(q) 

ng 

∑ 
y(t)) 

2g 

1g 

2x 

)(qLn 
nx 

u(t

Furthermore, 
 )(xk t can be computed recursively.


K) ( ( (x1(t) = L ( t u q ) = t u ) = Kq−1 

t u )1 q − a 1 − aq−1 

1) u(x1(t) − ax (t = − tK −1)1 

1) u(x1(t) = ax (t + − tK −1)1 

q − a(t) = 
1 − aq x1(t) = 

1 −

−1 

aq−1 x1(t)x2 q − a 

1)(t) − ax (t = − x1(2 1) ax −− 1 ( )
t tx2 

1)(t) ax2 (t + − x (1 1) ax −− 1 ( )
t tx = 2 

1)(t − − ax 1−−1 k 

Recursive Filters 

1)(t) axk (t + − (t) (61)x
 = xk k 
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