
2.160 System Identification, Estimation, and Learning 

Lecture Notes No. 
March 13, 2006 

6 Model Structure of Linear Time Invariant Systems 

6.1 Model Structure 
In representing a dynamical system, the first step is to find an appropriate 

structure of the model. Depending on the choice of model structure, efficiency and 
accuracy of modeling are significantly different. The following example illustrates 
this. Consider the impulse response of a stable, linear time-invariant system, as shown 
below. Impulse Response is a generic representation that can represent a large class of 
systems, but is not necessarily efficient, i.e. it often needs a lot of parameters for 
representing the same input-output relationship than other model structures. 

u(t) y(t)
G(q) A linear time-invariant system is 

completely characterized by its impulse 

g (1)
response 

kg )( ∞g (2) 1, a, a2,… 
( ( ) − kqG ) = ∑ q k g 

k = 1
k g )(

g (1) , g (2) ,… Too many parameters 

although truncated. 

1 2 3 4 k 

Can we represent the system with fewer parameters? 

( k − 1Consider k g ) = a k = ,...3,2,1 

( 
∞ 

k − 1 − kqG ) = ∑ a q 
k = 1 

a ∞ 
k − k − 1 =∑ ak − 1 − k ( 1Multiplying a : qG ) =∑ qa 

∞ 

q = qG ) −(
q q k = 1 k = 2 q 

− 1⎛ a ⎞ 1( (⎜⎜1 − ⎟⎟ qG ) = ∴ qG ) = 
q 

= 
1 

⎝ q ⎠ q 1 − aq − 1 q − a 

Therefore, qG ) is represented by only one parameter: one pole when using a rational(
function. 

The number of parameters reduces if one finds a proper model structure. The 
following section describes various structures of linear time-invariant systems. 

1 

10



6.2 A Family of Transfer Function Models 

6.2.1 ARX Model Structure 

Consider a rational function for q G ) :(


( ( (
t y ) = 
q B ) tu ) (1)
q A )(


( (
where q A ) and q B ) are polynomials of q : 

(q A ) ≡ 1 + q a −1 + ... + an q −na , (2)1 a


−nb
q B ) ≡ q b −1 + ... + q bn( 1 b 

(
( ( t y )(
t u ) 
q G ) = 

q B )

q A )( 

The input-output relationship is then described as 

( ( (t y ) + t y a − 1) + ... + t y a − n )1 n a 

= t u b − 1) + ... + t u b − n ) 
(3) 

1 ( nb 
( b 

See the block diagram below. 

(t e ) t eb ( ) t e )
t u )

a 

( ( t y )+ + + (
−1q b 1 + _ + 

−1
−1 qq 

b 2
+ + a 1

+ + 
−1q

−1q 
+ a 2 

+ 
+ −1

nbb 

q 

+ 
a na 

eXogenous input 
Auto Regression 
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Now let us consider an uncorrelated noise input t e ) entering the system. As long as (
(the noise enters anywhere between the output t y ) and the block of b 1 , i.e. 

( ), ( (t e t e ), te ) in the above block diagram, the dynamic equation remains the same a b 

and is given by: 

( ( (t y ) + t y a − 1) + ... + t y a − n )1 n a 

( nb 
( b (= t u b − 1) + ... + t u b − n ) + t e ) 

(4) 
1 

Including the noise term, this model is called “Auto Regressive with eXogenous 
( (input” model, or ARX Model for short. Using the polynomials q A ) and q B ) , (4) 

reduces to 

( ) ( ( ) ( (t y q A ) = t u q B ) + te ) (5) 

The adjustable parameters involved in the ARX model are 

Tθ = ( a , a 2 ..., , a , b , b 2 ,..., b ) (6)1 na 1 n 
b 

Comparing (5) with (11) of Lecture Notes 9 yields 

( ( 1(q G ,θ ) = 
q B ) q H ,θ ) = (7)
q A ) q A )( ( 

See the block diagram below. 

( ((
( ( t y ) t y )t u ) 
q G ) = 

q B ) 
q A )( 

1q H ) =( 
q A )( 

t e )(

Note that the uncorrelated noise term t e ) enters as a direct error in the dynamic (
equation. This class of model structures, called Equation Error Model, has a favorable 
characteristic leading to a linear regression, which is easy to identify. 

Note that if  n = 0 then t y ) = t u q B ) + te ) . This is called a Finite Impulse ( ( ) ( (a

Response (FIR) Model, as we have seen before. 
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6.2.2 Linear Regressions 

Consider the one-step-ahead prediction model in Lecture Notes 9-(18) 

ı( ) ( [1 (t t y −1) = H −1(q )G ( t u q ) − + H −1(q )] t y ) 9-(18) 

From (7), the predictor of ARX model is given by 

[1−+ 

This can be more directly obtained from (4), since the noise is uncorrelated.


The regression vector associated with this prediction model of ARX is defined as:


ı( ( ) (t y θ ) = t u q B ) (q A ()] t y ) (8) 

)]T),...,1 t u ( −− 

using this regression vector, (8) reduces to 

ı( ) = T (t )t y θ ϕ θ (10) 

ı(Note that the predictor t y θ ) is a scalar function of 

ϕ(t ) : a known vector, and 

θ : adjustable parameters. 

ϕ(t ) does not include any information of θ . 

The known and unknown parts are separated, and θ is linearly involved in the 
predictor. 

… a Linear Regression. 

6.2.3 ARMAX Model Structure 

Linear regressions can be obtained only for a class of model structures. Many others 
cannot be written in such a manner where a parameter vector is linearly involved in 
the predictor model. Consider the following input-output relationship: 

)(t y + 

(...)1()( 

()(),...,1 ( 

1 

11 

n 

an 

t e ct e c t e 

t u b nt y at y a 

c 

a 

+ + − ++ 

=−+− 

) 

(),...,1 

c 

n 

n 

t u b 
b 

− 

− )bn− 
(11) 

Using q c )( c 

c 

n 
n qcq c −− + + += ...1 1 

1 , (11) reduces to 

)()( t y q A = )()( t u q B )()( teqC+ (12) 

Therefore 

),(qG θ = 
)( 
)( 
q A 
q B ),(qH θ = 

)( 
)( 
q A 
qC (13) 

t y t y (( (ϕ(t ) ≡ [ − − ),...,1 − − ), t u a (9)
n nb 
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�
�
[ a
 c
nc ] T (14)θ
= b 1 b 2 bnb,
a
na ,
 ,, cc 1 �, a
2 , , , , , ,1 2 

(This model structure consists of the Moving Average part (MA), C (q ) te ) , the Auto 
( (Regressive(AR) part, q A ) ty ) , and the eXogenous input part (X). This model 

structure is called an ARMAX model for short. An ARMAX model cannot be written 
as a linear regression. 

6.2.4 Pseudo-linear Regressions 

The one-step-ahead predictor for the above ARMAX model is given by 

GH − 1 − 11 − H 

(15)B (q ) q A )(ı(t y θ ) = ( [1−+ )t u ] t y )(
C ( ) C ( )q q 

This cannot be written in the same form as the linear regression, but can be written in 
(a similar (apparently linear) inner product. Multiplying q c ) to both sides of (15) 

( t y θ ) yields and adding [1− q c )] ı( 

ı t y θ ) (t ,] θ ε )( ( (B q ) t u q A ( [1) − + ([ q c ) −+ 

(17)( )θ t y −= t y ) ı( 

)] t y )( 1 (16)=


Define Prediction Error 

θ ε )(t, 

and vector )(ϕ t as 

t ),( θ ϕ 
T 

c 

a 

ntt 
t u t u nt y t y 

)],(,1 ),...( 

(),...,1 (),(),...,1 ([ 

θε θ ε −− 

−− − − − ≡ bn )− 
(18) 

Then (15) reduces to θθ ϕ θ ),()(ı tt y T= (19) 

Note that ),(ε t θ includes θ and thereforeϕ depends onθ . Strictly speaking (15) is 
not a linear function of θ … 

….. A Pseudo Linear Regression 
This will make a significant difference in parameter estimation as discussed later. 
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6.2.5 Output Error Model Structure


)(qC 

)(qB )( 
1 

)(

)( )(
q A 

t e 

t u t y 

Equation 
Error 
Model 

Output

Error


)( 
)( 
qF 

qB)(

)(

)(t u 

t e 

t y 

Model 

Noise enter the process. Noise dynamics is independent of 
This resembles the process dynamics 

Preocess Noise This resembles the measurement 
in the Kalman Filter. noise of KF 

( (Let t z ) be undisturbed output driven by t u ) alone, 

( ( ((20) t z ) + t z f − ),...,1 + f n f t z − n f )1 

)( 
)( 
qF 

qB)( )(t u t z = t u b − ),...,1 b t u − n f )1 ( nb 
( 

− ncF (q ) + = q f − 1 + + f n q1 1 ... 
c 

( (Note that t z ) is not an observable output. What we observed is t y ) 

(21) t y )( B (q ) t u )( += 
F (q )


te )( 

The parameters to be determined are collectively given by 

]T(22) θ =[ b b 2 … bnb f 1 f 2 … f1 n 
f 

(Note that t z ) is a variable to be computed (estimated) based on the parameter vector 
θ ; therefore, t z ,θ ) . The one-step-ahead predictor is ( 

(23) t y θ ) = 
B (q ) t u ) = t z ,θ )ı( ( (
F (q ) 

( ı( (Which is nothing but t z ,θ ) . Therefore, t y − 1θ ) = tz − ,1 θ ) 
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ı(t y θ ) = − t z f − ,1 θ ) − − t z f − ,2 θ ) − − f t z − n f ,θ )1 ( 2 ( � n f 
( 

(24) + t u b + + − b t u − nb )1 ( 1) � nb 
( 

T ) ⋅= ϕ (t , θ θ 

where ϕ (t ,θ ) is 

(t , ( ( t z t z f
T( ((25) θ ϕ ) = [ t u − 1)� t u − n ) − − ,1 θ )� − − n ,θ )]b 

Therefore this is a Pseudo-Linear Regression. 

Box-Jenkins Model Structure 
This simple output error (OE) model can be extended to the one having an ARMA 
model for the error dynamics 

t e )(

t y )(t u )(

)()( 
F 

qB
+= 

D 

C 

F 

B 

t u 
C (q )(26) t y )( t e )(

( ) D ( )q q 

6.3 State Space Model 

State variables t x )( T 
n txtxtx )](),(),([ 21 �= 

Stationary Time-invariant 

(27) (t x )1+ = )()( t x A +θ )()( t u B +θ )(tw nnRA ×∈ )(θ 

(28) )(t y )()()( tvt x C += θ 
mnRB ×∈ )(θ 

l × nC (θ ) ∈ R 

Matrix A (θ ) , B (θ ) and C (θ ) contain parameters to be determined, θ 

tw t u { ( )} and { ( )} are process and output noises, respectively, with zero mean values and 

covariance matrices: 
( TE [ tw )w (t )] = R (θ )1 

( T(29) E [ tv )v (t )] = R (θ )2 

( TE [ tw )v (t )] = R (θ )12 

0)θ (UsuallyR = 12 
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nnot be predicted form past data. 

Using forward shift operation q , we can rewrite (27) as 

( ( ([qI − A (θ )] t x ) = B (θ ) t u ) + tw ) 

Therefore the output t y ) is given by (

−1A (θ )] tw +− 

from (28) 

( t u ( (2)Comparing this with t y ) = G (q ,θ ) ( ) + H (q ,θ ) te ) 

)]−1(30) (t) = C (θ )[qI − A ( θ θ (B t u C( ) )
 (θ )[qI (( ) tv )+ 

(31) (H (q ,θ ) te ) C(θ )[qI )()]( 1A +− −θ tw tv )( 

Equation Error Model OE Model 
w/ q A )(

Innovations representation of the Kalman filter.

Let t x ,θ ) be the estimated state using the Kalman filter.
ı( 

The prediction error given by 

(32) 
( ı( ) = C ( ( ı(t y ) −C (θ ) t x , θ θ )[ t x ) − t x ,θ )] )te ≡+ (tv ) ( 

−1 −1 ][qI − A (θ )] Bu + qI − A (θ )] w
represents the part of t y ) that ca This part is (

called, the “innovation”, denoted t e ) . Using this innovation, K-F is ritten as (

(33) t x + ,1 θ ) = A (θ ) ı( ,θ ) + B (θ ) t u ) + k (θ ) t e )ı( t x ( (


( t x (
(34) t y ) = C (θ ) ı( ,θ ) + te ) 

The covariance of innovation t e ) is (

(P θ θ θ T(35) E [ e t e (t )] = c (θ ) )C ( ) + R ( )( ) T 
2 

(Error covariance of t e ) and x ı are not correlated 

state estimation 

Combining (33) and (34), and comparing it with (2),
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( ( ((36) t y ) = G (q ,θ ) t u ) + H (q ,θ ) te ) 

− 1G (q ,θ ) = C (θ )[qI − A (θ )] B (θ )
(37) 

− 1H (q ,θ ) = C (θ )[qI − A (θ )] K (θ ) + I 

This shows the relationship between the state space model and the input-output model. 
They are connected through the innovation process. 

(
 ı(qI − A ) t x ,θ ) Bu (t ) (tKe += ) 

− 1 − 1t x ,θ ) − = A ) Bu (t ) − + A ) Ke (t )ı( (qI (qI 
(38) 

− 1A ) Ke t +− − 1C qI A ) Bu t C qIt y )( ( − ( ) ( (( ) t e )+
= 

6.4 Consistent and Unbiased Estimation: Preview of Part 3, System ID 

This section briefly describes some important issues on model structure in 
estimating the parameters involved in the model. Details will be discussed in Part 3, 

NSystem Identification. Let Z be a set of data obtained over the period of time: 
1 ≤ t ≤ N . One of the critical issues in system identification is whether the estimated 

ı Nmodel parameters θ based on the data set Z approaches the true values θ , as N 0

the number of data points N tends to infinity. Several conditions must be met to 
guarantee this important property, called “Consistency”. First, the model structure 

Nmust be the correct one. Second, the data set Z must be rich enough to identify all 
the parameters involved in the model. Furthermore, it depends on whether the noise 
term tv ) entering the system is correlated, which estimation algorithm is used for (
determining θ ı , and how the parameters of the model are involved in the predictor N

t y | θ ) .ı(

Consider the following squared norm of prediction error:


N 

( ı(VN (θ , Z N ) = 
1 ∑ 

1 ( t y ) − t y |θ )) 
2 

(39)
N t = 1 2 

Assume that the one-step-ahead predictor is given by a linear regression: 

ı( ) = T (t ,t y θ ϕ θ )θ (19) 

The Least Square Estimate (LSE) provides the optimal parameters minimizing the 
mean squared error V (θ , Z N ) :N 

ı LS N − 1θ N = min arg V (θ , Z ) = ( R ( N )) f ( N ) (40)Nθ 

where 
N N1 1t )( ∑ ∑T( )ϕ ϕ ϕ ( t y t )) (R N
(
 ) = and f N( ) = (41)t

N Nt = 1 t = 1 
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1 

Suppose that the model structure is correct, and real data are generated from the true 
process with the true parameter values θ :0

( (t )Tty ) = θϕ + v (t ) (42)0 0 

ıLSWhether the estimate θ N is consistent or not depends on the data set and the 
stochastic properties of the noise term )(t0 

N 

v 

process into f (N ) yields 

N 1 
t = 1

(t ) ( (t )T 
0 0 0 

N 

f ( N ) = ∑ θϕϕ + v (t )) = R ( N )θ + ∑ϕ (t ) v (t ) (43)
N t = 1

0 

� �� � ��� 

ı 

f *(N )


LS − − 1 − 1
θθ = ( R ( N )) [ R ( N )θ + f * ( N )]−θ = ( R ( N )) f * (N ) (44)N 0 0 0


LS
To be consistent, i.e. lim θθ ı = , the following conditions must be met:N 0N →∞ 

(I) Matrix lim NR ( ) must be non-singular. The data series, ϕ ( ),1 ϕ ( ),2 ϕ ( ),3 � ,
N

. Substituting the expression of the true


∞→ 

must be able to “Persistently Exciting” the system. 
(II) lim f *( N ) = 0 . This can be achieved in two ways: 

N →∞ 

)(t0v 

v ( ( ( (0 t ) is not correlated with ty − ),1 ty − ),2 ty − ),3 � and 
( ( (tu − ),1 tu − ),2 tu − ),3 � , i.e. all the components of ϕ (t ) . Therefore, 

N 

lim 1 ∑ϕ (t ) v (t ) = 0 * 
N →∞ N t = 1

0 

Case B: The model structure is FIR, i.e. n = 0 , and inputs tu − ),1 tu − ),2 �( (a

Case A: is an uncorrelated random process with zero mean values. Then, 

are uncorrelated with )(t0v 

)( example, v (t ) H (q ,θ ) te0 0 

. The noise term
 )(t0v 

If the model structure is FIR with uncorrelated 
itself may be correlated, for 

= . 
)(v 0 t 

The above two are straightforward cases; Consistent estimates are guaranteed with 
simple LSE, as long as the data are persistently exciting. Care must be taken for other 
model structures and correlated noise term. For example, ARMAX model is used, the 
linear regression cannot be used, and the output sequence involved in ϕ (t ) may be 

inputs, then
 ϕ (t ) ↔
 are uncorrelated, hence lim
 f N*( ) 0= . 
N →∞ 

correlated with :)(0 tv 

(),1( − − − − tytyϕ (t ) = [ ),2 � ] 

)1(00 −+ tvθϕ ( −= Tty − 1)( 1)t This may be correlated with v )(t0 

* Ergodicity of the random process is assumed. 
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