2.160 Identification, Estimation, and Learning

Lecture Notes No. 1

February 8, 2006

Courtesy of Prof. Asada. Used with permission.

Physical Modeling

- 1. Passive elements: mass, damper, spring
- 2. Sources
- 3. Transducers
- 4. Junction structure

Physically meaningful parameters

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_n}$$
$$a_i = a_i (M, B, K)$$
$$b_i = b_i (M, B, K)$$

System Identification

analyze

3. Not available until an actual system has been built

2

Introduction: System Identification in a Nutshell

Finite Impulse Response Model

$$y(t) = b_1 u(t-1) + b_2 u(t-2) + \dots + b_m u(t-m)$$

 $\boldsymbol{\theta} := [b_1, b_2, \cdots, b_m]^T \in R^m$

Define

$$\varphi(t) := [u(t-1), u(t-2), \cdots, u(t-m)]^T \in \mathbb{R}^m$$
 known

Vector θ collectively represents model parameters to be identified based on observed data y(t) and $\varphi(t)$ for a time interval of $1 \le t \le N$.

unknown

Observed data:
$$y(1), \dots, y(N)$$

$$\longrightarrow$$
 Estimate θ Estimation $\hat{y}(t) = \varphi(t)^T \theta$

This predicted output may be different from the actual y(t).

Find θ that minimize $V_N(\theta)$

$$V_{N}(\theta) = \frac{1}{N} \sum_{t=1}^{N} (y(t) - \hat{y}(t))^{2}$$
$$\hat{\theta} = avg \min_{\theta} V_{N}(\theta)$$
$$\frac{dV_{N}(\theta)}{d\theta} = 0$$
$$V_{N}(\theta) = \frac{1}{N} \sum_{t=1}^{N} (y(t) - \varphi^{T}(t)\theta)^{2}$$
$$\frac{2}{N} \sum_{t=1}^{N} (y(t) - \varphi^{T}(t)\theta)(-\varphi) = 0$$
$$\sum_{t=1}^{N} y(t)\varphi(t) = \sum_{t=1}^{N} (\varphi^{T}(t)\theta)\varphi(t)$$

$$\begin{bmatrix} \sum_{t=1}^{N} (\varphi(t)\varphi^{T}(t)] \theta = \sum_{t=1}^{N} y(t)\varphi(t) \\ \blacksquare \\ R_{N} \\ \therefore \quad \hat{\theta}_{N} = R_{N}^{-1} \sum_{t=1}^{N} y(t)\varphi(t) \end{bmatrix}$$

<u>Question1</u> What will happen if we repeat the experiment and obtain $\hat{\theta}_N$ again?

Consider the expectation of $\hat{\theta}_N$ when the experiment is repeated many times? Average of $\hat{\theta}_N$

Would that be the same as the true parameter θ_0 ?

Let's assume that the actual output data are generated from

$$y(t) = \varphi^{T}(t)\theta_{0} + e(t)$$

 θ_0 is considered to be the true value.

Assume that the noise sequence $\{e(t)\}$ has a zero mean value, i.e. E[e(t)]=0, and has no correlation with input sequence $\{u(t)\}$.

$$\hat{\theta}_{N} = R_{N}^{-1} \sum_{t=1}^{N} y(t)\varphi(t) = R_{N}^{-1} \sum_{t=1}^{N} \left[\left(\varphi^{T}(t)\theta_{0} + e(t) \right) \varphi(t) \right]$$
$$= R_{N}^{-1} \left(\sum_{t=1}^{N} \varphi(t)\varphi^{T}(t) \right) \theta_{0} + R_{N}^{-1} \sum_{t=1}^{N} \varphi(t)e(t)$$
$$R_{N}$$
$$\therefore \quad \hat{\theta}_{N} - \theta_{0} = R_{N}^{-1} \sum_{t=1}^{N} \varphi(t)e(t)$$

Taking expectation

$$E[\hat{\theta}_{N} - \theta_{0}] = E\left[R_{N}^{-1}\sum_{t=1}^{N}\varphi(t)e(t)\right] = R_{N}^{-1}\sum_{t=1}^{N}\varphi(t) \cdot E[e(t)] = 0$$

<u>Question2</u> Since the true parameter θ_0 is unknown, how do we know how close $\hat{\theta}_N$ will be to θ_0 ? How many data points, *N*, do we need to reduce the error $\hat{\theta}_N - \theta_0$ to a certain level?

Consider the variance (the covariance matrix) of the parameter estimation error.

$$P_{N} = E[(\hat{\theta}_{N} - \theta_{0})(\hat{\theta}_{N} - \theta_{0})^{T}]$$

= $E\left[R_{N}^{-1}\sum_{t=1}^{N}\varphi(t)e(t)\cdot\left(R_{N}^{-1}\sum_{s=1}^{N}\varphi(s)e(s)\right)^{T}\right]$
= $E\left[R_{N}^{-1}\sum_{t=1}^{N}\sum_{s=1}^{N}\varphi(t)e(t)e(s)\varphi^{T}(s)R_{N}^{-1}\right]$
= $R_{N}^{-1}\left[\sum_{t=1}^{N}\sum_{s=1}^{N}\varphi(t)E[e(t)e(s)]\varphi^{T}(s)\right]R_{N}^{-1}$

Assume that $\{e(t)\}$ is stochastically independent

$$E[e(t)e(s)] = \begin{cases} E[e(t)e(s)] = 0 & t \neq s \\ E[e^{2}(t)] = \lambda & t = s \end{cases}$$

Then $P_{N} = R_{N}^{-1} \left[\sum_{t=1}^{N} \varphi(t)\lambda\varphi^{T}(t) \right] R_{N}^{-1} = \lambda R_{N}^{-1}$

As N increases, R_N tends to blow out, but R_N/N converges under mild assumptions.

$$\lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \varphi(t) \varphi^{T}(t) = \lim_{N \to \infty} \frac{1}{N} R_{N} = \overline{R}$$

For large $N, R_{N} \cong N\overline{R}$, $R_{N}^{-1} \cong \frac{1}{N} \overline{R}$
 $\hat{\theta}_{N}$
 θ_{0}

Ν

$$P_N = \frac{\lambda}{N} \overline{R}^{-1}$$
 for large N.

I. The covariance P_N decays at the rate 1/N.

----- Parameters approach he limiting value at the rate of $\frac{1}{\sqrt{N}}$

II. The covariance is inversely proportional to

$$P_N \propto \frac{\lambda}{magnitude\overline{R}}$$
$$R_N = \begin{bmatrix} r_{11} & \dots & r_{1m} \\ \vdots & \ddots & \vdots \\ r_{m1} & \dots & r_{mm} \end{bmatrix}$$
$$r_{ij} = \sum_{t=1}^N u(t-i)u(t-j)$$

- III. The convergence of $\hat{\theta}_N$ to θ_0 may be accelerated if we design inputs such that \overline{R} is large.
- IV. The covariance does not depend on the average of the input signal. Only the second moment

What will be addressed in 2.160?

A) How to best estimate the parameters

What type of input is maximally informative?

- Informative data sets
- Persistent excitation
- Experiment design
- Pseudo Random Binary signals, Chirp sine waves, etc.

How to best tune the model / best estimate parameters

How to best use each data point

- Covariance analysis
- Recursive Least Squares
- Kalman filters
- Unbiased estimate
- Maximum Likelihood

B). How to best determine a model structure

How do we represent system behavior? How do we parameterize the model?

- i. Linear systems
 - FIR, ARX, ARMA, BJ,.....
 - Data compression: Laguerre series expansion
- ii. Nonlinear systems
 - Neural nets
 - Radial basis functions
- iii. Time-Frequency representation
 - Wavelets

Model order: Trade-off between accuracy/performance and reliability/robustness

- Akaike's Information Criterion
- MDL