

Identification, Estimation, and Learning

3-0-9 H-Level Graduate Credit Prerequisite: 2.151 or similar subject

Reference Books

Lennart Ljung, "System Identification: Theory for the User, Second Edition", Prentice-Hall 1999

Graham Goodwin and Kwai Sang Sin, "Adaptive Filtering, Prediction, and Control", Prentice-Hall 1984

Kenneth Burnham and David Anderson, "Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Second Edition", Springer 1998

Lecture Notes

- Provided for every lecture
- Helpful
- Intensive and extensive
- Covers a lot of topics
- Examples
- Background materials and review
- Read them before going to the reference books

Grading

•	Mid-Term exam,	30%
	(12:30 pm – 2:30 pm, April 3, 2006)	
•	End-of-Term exam	30%
	(12:30 pm – 2:30 pm, May 17, 2006)	
•	Homework Assignment	20 %
	(8 ~ 9 assignments)	
•	Term project	20%
	(Suggested topics and guidelines will be provided.)	

					Total			100%
Problem Set Weekly Schedule:								
	W	R	F	Sa	Su	Μ	Т	W
	Out		Read		Do It	Just	Asada	Due
			notes &	& PS		Do It	Office H	

H. Harry Asada

- Specializes in Robotics, Biomedical Engineering
- Regularly teaches
 - 2.12 Introduction to Robotics
 - 2.151 Advanced System Dynamics and Control
 - -2.165 Robotics
 - 2.14 Feedback Control

Mathematical models of real-world systems are often too difficult to build based on first principles *alone*.

Figure by MIT OCW.

Figure by MIT OCW.

System Identification; "Let the data speak about the system".

Courtesy of Prof. Asada. Used with permission.

Image removed for copyright reasons.

HVAC

Physical Modeling: 2.151

- Passive elements: mass, damper, spring
- Sources
- 3. Transducers
- 4. Junction structure

Physically meaningful parameters

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_n}$$

$$a_i = a_i(M, B, K)$$
$$b_i = b_i(M, B, K)$$

System Identification

Physical modeling

Comparison

Pros

- 1. Physical insight and knowledge
- 2. Modeling a conceived system before hardware is built

Cons

- 1. Often leads to high system order with too many parameters
- 2. Input-output model has a complex parameter structure
- 3. Not convenient for parameter tuning
- 4. Complex system; too difficult to analyze

Pros

- 1. Close to the actual input-output behavior
- 2. Convenient structure for parameter tuning
- 3. Useful for complex systems; too difficult to build physical model

Cons

- 1. No direct connection to physical parameters
- 2. No solid ground to support a model structure
- 3. Not available until an actual system has been built

System identification and estimation: Underpinning Theory of

- Adaptive control
- Learning algorithms
- Robust control
- Adaptive filters
- Navigation and guidance

Adaptive Control

Successfully Applied to:

- The Apollo project: Kalman filter
- Mobile robot navigation
- Robot skill learning
- Cardiovascular monitoring
- Air conditioner control
- CCV: Control configured vehicle
- Speech recognition
- Image processing

National Aeronautics and Space Administration

The Apollo project: Kalman filter

Estimation and Learning of Ground Characteristics Professor S. Dubowsky

National Aeronautics and Space Administration

Images removed due to copyright reasons.

Mobile Sensor Network

Professor John Leonard

Image removed due to copyright reasons.

Courtesy of Prof. John Leonard. Used with permission.

Wearable Sensors: Noise Cancellation Using Accelerometers

Active Noise Cancellation

Cardiovascular Monitoring: Invasive Catheter vs. Noninvasive Peripheral Sensors

Noninvasive: peripheral sensors

Image removed for copyright reasons.

Arterial Tonometer

Courtesy of Prof. Asada. Used with permission.

PPG Ring Sensor

Wearable

Deriving 'central' information from 'peripheral' noninvasive measurements

Multi-Channel Blind System Identification

Zhang and Asada, MIT

Animal Study

Right Iliac Pressure

Multi-channel Blind System ID

A broadcast signal is transmitted through multiple paths and observed simultaneously by multiple receivers at different locations

Multi-Channel Blind System Identification

Zhang and Asada, MIT

Cardiovascular MBSI

Cardiovascular system has a structure similar to wireless communication systems.

Multi-Channel Blind System Identification

Zhang and Asada, MIT

Multi-channel Blind System Identification (MBSI)- A Magic

Cardiac output waveform estimation using the Laguerre deconvolution algorithm

Figure by MIT OCW.

Courtesy of Prof. Asada. Used with permission.