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Models with Nonlinear Energy Storage Elements: Energy Variables 

If any of the energy storage elements in a model have nonlinear constitutive equations, then 
power or circuit variables may be a poor choice for the state variables associated with those 
elements.  This is because differentiating a nonlinear constitutive equation (in step 6 above) will 
not necessarily result in a function only of power variables and their rates of change. For 
example, consider a nonlinear capacitor: 

de ?F dq ?F 
dt	  = ?q(q) dt  = ?q(q) f (6.10) 

Now it is necessary to substitute for the variable q as well as the variable f.  One might try to do 
so by inverting the capacitor constitutive equation. 

de ?F 
dt	  = ?q(F-1(e)) f (6.11) 

However, there are two problems with this approach: First of all, the required inverse function 
may not exist.  Secondly, even if it does, the required algebra may be quite tedious.  A better 
alternative is to choose different state variables: the displacements and momenta associated with 
independent energy storage elements — known as energy state variables or Hamiltonian state 
variables. Steps 5 and 6 of the substitution procedure are changed as follows. 

5. 	 Choose energy state variables. These are the displacements associated with independent 
capacitors and the momenta associated with independent inertias.  The rate of change of each 
state variable is equal to the input variable to the corresponding independent energy storage 
element. 

5a. independent capacitor: dq/dt = f 

5b. independent inertia: dp/dt = e 

6. 	 Using its constitutive equation, write the output variable for each independent energy storage 
element as a function of the corresponding state variable. 

6a. independent capacitor: e = Φ(q) 

6b. independent inertia: f = Ψ(p) 

The rest of the substitution procedure remains unchanged.   

Example: Nonlinear Electric Circuit 

Consider the electric circuit of figure 6.1a but assume that the capacitor and inductor have the 
following nonlinear constitutive equations.  For the capacitor: 



Integrated Modeling of Physical System Dynamics 
© Neville Hogan 1994 page 2 

1 qCqs 
eC = C qs2 – qC2 (6.12) 

where qs is the saturation charge, (a constant) the maximum charge which may be stored in the 
capacitor. Note that for qC << qs the constitutive equation reduces to that of an ideal (linear) 
capacitor. 

lim eC qC

qC∆0  = C (6.13) 


For the inductor: 

1 λLλs
iL = L λs2 – λL2 (6.14) 

where λs is the saturation flux linkage, (a constant) the maximum flux linkge which may stored 
in the inductor. For λL << λs the constitutive equation reduces to that of an ideal (linear) 
inductor. 

lim iL λL

lL∆0  = L (6.15) 


If we were to choose the capacitor voltage as a state variable, differentiating the constitutive 
equation would result in the following relation. 
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dt  eC = 2 – qC2)3/2

The nonlinear capacitor equation may be inverted as follows. 

qseCC 
(6.17) 

Therefore, in this case, the charge qC may be eliminated from equation 6.16 and the capacitor 
voltage could be used as a state variable. The resulting state equation is a little intimidating: 
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By a similar argument, the inductor current could also be used as a state variable.  However, it is 
far simpler to use the capacitor charge and the inductor flux linkages as state variables. 

d 
dt  qC = iC (6.19) 

d 
dt λL = eL (6.20) 

Reading the junction equation from the causal graph (figure 6.1d) iC = iL. Using the nonlinear 
inductor constitutive equation (6.14) we obtain one state equation. 

dqC 1 λLλs 
dt  = L (6.21)

λs2 – λL2 

As before, reading from the causal graph, the inductor voltage is determined by the other three 
one-port elements 

eL = eS – eC – eR (6.22) 

Substitute for eC and eR in equation 6.22 using the constitutive equations of the nonlinear 
capacitor (6.12) and the resistor (6.6). 

d 1 qCqs 
dt λL = eS – C 2 – qC2  – R iR (6.23) 

qs

Reading the junction equation from the causal graph, the resistor current is determined by the 
inductor current iR = iL. Substituting using the inductor constitutive equation, the second state 
equation is: 

d 1 qCqs λLλs 
dt λL = eS – C (6.24) 

As before, the substitution process stops when the rate of change of a state variable has been 
expressed as a function of state and input variables. Note that in this nonlinear system, there is 
no clear way to express the state equations in vector/matrix form. 

Energy variables may also be used for systems composed exclusively of linear elements.  For 
this reason, energy variables have been proposed as the exclusive choice of state variables for 
systems1 represented by bond graphs. However, there are several reasons why this is not 
recommended: 

1 Karnopp, Dean and Rosenberg, Ronald (1975) System Dynamics: A Unified Approach, John 
Wiley & Sons, New York. 

qs2 – qC2  – R 
λs2 – λL2 
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•	 physical system behavior is fundamentally independent of the choice of variables, so we 
should expect no universal rule for choosing state variables. 

•	 energy variables may needlessly complicate the equation derivation process. 

•	 energy variables may be less familiar and less comprehensible than the corresponding power 
variables. 

This last point may seem trivial; in fact, it is probably the most important.  One of the primary 
reasons for developing models is to enhance understanding.  For most of us, the current in an 
inductor is more meaningful than the corresponding flux linkage; the speed of a mass is more 
readily visualized than its momentum.   


