Ideal asymmetric junction elements

Relax the symmetry assumption and examine the resulting junction structure. For simplicity, consider two-port junction elements.

As before, assume instantaneous power transmission between the ports without storage or dissipation of energy. Characterize the power flow in and out of a twoport junction structure using four real-valued wave-scattering variables. Using vector notation:

$$
\begin{align*}
& \mathbf{u}=\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right] \tag{A.1}\\
& \mathbf{v}=\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2}
\end{array}\right] \tag{A.2}
\end{align*}
$$

The input and output power flows are the square of the length of these vectors, their inner products.

$$
\begin{align*}
& \mathrm{P}_{\text {in }}=\sum_{\mathrm{i}=1}^{2} \mathrm{u}_{\mathrm{i}}{ }^{2}=\mathbf{u}^{\mathrm{t}_{\mathbf{u}}} \tag{A.3}\\
& \mathrm{P}_{\text {out }}=\sum_{\mathrm{i}=1}^{2} \mathrm{v}_{\mathrm{i}}{ }^{2}=\mathbf{v}^{\mathrm{t}} \mathbf{v} \tag{A.4}
\end{align*}
$$

The constitutive equations of the junction structure may be written as follows.

$$
\begin{equation*}
\mathbf{v}=\mathbf{f}(\mathbf{u}) \tag{A.5}
\end{equation*}
$$

Geometrically, the requirement that power in equal power out means that the length of the vector \mathbf{v} must equal the length of the vector \mathbf{u}, i.e. their tips must lie on the perimeter of a circle (see figure A.1).

For any two particular values of \mathbf{u} and \mathbf{v}, the algebraic relation $\mathbf{f}(\cdot)$ is equivalent to a rotation operator.

$$
\begin{equation*}
\mathbf{v}=\mathbf{S}(\mathbf{u}) \mathbf{u} \tag{A.6}
\end{equation*}
$$

where the square matrix \mathbf{S} is known as a scattering matrix.

S need not be a constant matrix, but may in general depend on the power flux through the junction, hence the notation $\mathbf{S}(\mathbf{u})$. However, \mathbf{S} is subject to important restrictions. In particular,

$$
\begin{equation*}
\mathbf{v}^{\mathrm{t}} \mathbf{v}=\mathbf{u}^{\mathrm{t}} \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{u}=\mathbf{u}^{\mathrm{t}} \mathbf{u} \tag{A.7}
\end{equation*}
$$

\mathbf{S} is ortho-normal matrix: the vectors formed by each of its rows (or columns) are (i) orthogonal and (ii) have unit magnitude; its transpose is its inverse.

$$
\begin{equation*}
S^{t} \mathbf{S}=1 \tag{A.8}
\end{equation*}
$$

This constrains the coefficients of the scattering matrix as follows.

$$
\begin{align*}
& \mathbf{S}=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \tag{A.9}\\
& \mathrm{a}^{2}+\mathrm{c}^{2}=1 \tag{A.10}\\
& \mathrm{ab}+\mathrm{cd}=0 \tag{A.11}\\
& \mathrm{~b}^{2}+\mathrm{d}^{2}=1 \tag{A.12}
\end{align*}
$$

As there are only three independent equations and four unknown quantities, we see that this junction is characterized by a single parameter. We may also write the orthogonality condition as

$$
\begin{equation*}
\mathbf{S S}^{\mathrm{t}}=\mathbf{1} \tag{A.13}
\end{equation*}
$$

which yields the following equations.

$$
\begin{align*}
& a^{2}+b^{2}=1 \tag{A.14}\\
& a c+b d=0 \tag{A.15}\\
& c^{2}+d^{2}=1 \tag{A.16}
\end{align*}
$$

There are four possible solutions to these equations. Combining A. 10 and A.16, $a^{2}=1-c^{2}=d^{2}$. Thus $a= \pm d$.

If $a=d$ then $b=c= \pm \sqrt{1-a^{2}}$.
One solution
Choosing the positive root yields one solution. Assuming the coefficient a to be the undetermined parameter,

$$
\mathbf{S}=\left[\begin{array}{cc}
a & \sqrt{1-a^{2}} \tag{A.17}\\
-\sqrt{1-a^{2}} & a
\end{array}\right]
$$

Rewrite in terms of effort and flow variables.

$$
\begin{align*}
& \mathbf{e}=\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right] \tag{A.18}\\
& \mathbf{f}=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] \tag{A.19}
\end{align*}
$$

The relation between efforts and wave-scattering variables is as follows.

$$
\begin{equation*}
\mathbf{e}=(\mathbf{u}-\mathbf{v}) \mathrm{c}=\mathrm{c}(\mathbf{1}-\mathbf{S}) \mathbf{u} \tag{A.20}
\end{equation*}
$$

where c is a scaling constant. The relation between flows and wave-scattering variables is as follows.

$$
\begin{equation*}
\mathbf{f}=(\mathbf{u}+\mathbf{v}) / \mathbf{c}=1 / \mathrm{c}(\mathbf{1}+\mathbf{S}) \mathbf{u} \tag{A.21}
\end{equation*}
$$

If $|a| \neq 1$ then $\mathbf{1}+\mathbf{S}$ and $\mathbf{1}$ - \mathbf{S} are nonsingular matrices and the input wave scattering variables u_{1} and u_{2} may be eliminated as follows.

$$
\begin{align*}
& \mathbf{e}=c^{2}(\mathbf{1}-\mathbf{S})(\mathbf{1}+\mathbf{S})^{-1} \mathbf{f} \tag{A.22}\\
& {\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=c^{2}\left[\begin{array}{cc}
0 & -\sqrt{(1-a) /(1+a)} \\
\sqrt{(1-a) /(1+a)} & 0
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]} \tag{A.23}
\end{align*}
$$

Writing $\mathrm{G}=\mathrm{c}^{2} \sqrt{(1-\mathrm{a}) /(1+\mathrm{a})}$ we obtain the equation for an ideal gyrator.

$$
\left[\begin{array}{l}
e_{1} \tag{A.24}\\
e_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & -G \\
G & 0
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]
$$

Note that equations A. 20 and A. 21 imply a sign convention in effort-flow coordinates such that power is positive inwards on both ports.

$$
\begin{equation*}
\text { Pnet inwards }=\mathbf{e}^{\mathbf{t} \mathbf{f}}=\mathbf{u}^{\mathbf{t}} \mathbf{u}-\mathbf{v}^{\mathbf{t}} \mathbf{v} \tag{A.25}
\end{equation*}
$$

To follow the more common sign convention we may simply change the sign of f_{2} in equation A. 24.

If $\mathrm{a}=1, \mathbf{e}$ is identically zero for all values of \mathbf{f}. No energy is exchanged between the ports and the junction structure behaves like a dissipator with zero resistance.

If $\mathbf{a}=-1, \mathbf{f}$ is identically zero for all values of \mathbf{e}. No energy is exchanged between the ports and the junction structure behaves like a dissipator with infinite resistance (zero conductance).

A second solution

Choosing $\mathrm{a}=\mathrm{d}$ and using the negative root yields another solution. Again assuming the coefficient a to be the undetermined parameter,

$$
\mathbf{S}=\left[\begin{array}{cc}
\mathrm{a} & -\sqrt{1-\mathrm{a}^{2}} \tag{A.26}\\
\sqrt{1-\mathrm{a}^{2}} & \mathrm{a}
\end{array}\right]
$$

In this case the relation between efforts and flows is

$$
\left[\begin{array}{l}
e_{1} \tag{A.27}\\
e_{2}
\end{array}\right]=c^{2}\left[\begin{array}{cc}
0 & \sqrt{(1-a) /(1+a)} \\
-\sqrt{(1-a) /(1+a)} & 0
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]
$$

Again we obtain the equation for an ideal gyrator.

$$
\left[\begin{array}{l}
\mathrm{e}_{1} \tag{A.28}\\
\mathrm{e}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & \mathrm{G} \\
-\mathrm{G} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{f}_{1} \\
\mathrm{f}_{2}
\end{array}\right]
$$

A third solution

If $\mathrm{a}=-\mathrm{d}, \mathrm{b}=\mathrm{c}= \pm \sqrt{1-\mathrm{a}^{2}}$. Using the positive root and assuming a to be the undetermined parameter

$$
\mathbf{S}=\left[\begin{array}{cc}
\mathrm{a} & \sqrt{1-\mathrm{a}^{2}} \tag{A.29}\\
\sqrt{1-\mathrm{a}^{2}} & -\mathrm{a}
\end{array}\right]
$$

In this case the matrices $\mathbf{1}+\mathbf{S}$ and $\mathbf{1 - S}$ are singular for all values of the parameter a.

However, equations A. 20 and A. 21 may be combined as follows:

$$
\begin{align*}
& {\left[\begin{array}{c}
\mathrm{e}_{1} / \mathrm{c} \\
\mathrm{e}_{2} / \mathrm{c} \\
\mathrm{cf}_{1} \\
\mathrm{cf}_{2}
\end{array}\right]=\left[\begin{array}{c}
1-\mathrm{S} \\
---- \\
\mathbf{1}+\mathrm{S}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right]} \tag{A.30}\\
& {\left[\begin{array}{c}
\mathrm{e}_{1} / \mathrm{c} \\
\mathrm{e}_{2} / \mathrm{c} \\
\mathrm{cf}_{1} \\
\mathrm{cf}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1-\mathrm{a} & -\sqrt{1-\mathrm{a}^{2}} \\
-\sqrt{1-\mathrm{a}^{2}} & 1+\mathrm{a} \\
1+\mathrm{a} & \sqrt{1-\mathrm{a}^{2}} \\
\sqrt{1-\mathrm{a}^{2}} & 1-\mathrm{a}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right]} \tag{A.31}
\end{align*}
$$

If $|a| \neq 1$, the 4×2 matrix relating efforts and flows to the input scattering variables contains two nonsingular 2×2 submatrices.

$$
\begin{align*}
& \left.\left[\begin{array}{l}
e_{2} / c \\
c f_{1}
\end{array}\right]=\left[\begin{array}{cc}
-\sqrt{1-a^{2}} & 1+a \\
1+a & \sqrt{1-a^{2}}
\end{array}\right] \begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{A.32}\\
& \left.\left[\begin{array}{l}
e_{1} / c \\
c_{2}
\end{array}\right]=\left[\begin{array}{cc}
1-a & -\sqrt{1-a^{2}} \\
\sqrt{1-a^{2}} & 1-a
\end{array}\right] \begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \tag{A.33}
\end{align*}
$$

Solving the second of these for \mathbf{u} and substituting into the first we obtain a relation between efforts and flows.

$$
\left[\begin{array}{l}
e_{2} \tag{A.34}\\
f_{1}
\end{array}\right]=\left[\begin{array}{cc}
-\sqrt{(1+a) /(1-a)} & 0 \\
0 & \sqrt{(1+a) /(1-a)}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
f_{2}
\end{array}\right]
$$

Writing $\mathrm{T}=\sqrt{(1+\mathrm{a}) /(1-\mathrm{a})}$ we obtain the equation for an ideal transformer.

$$
\left[\begin{array}{l}
\mathrm{e}_{2} \tag{A.35}\\
\mathrm{f}_{1}
\end{array}\right]=\left[\begin{array}{cc}
-\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right]\left[\begin{array}{l}
\mathrm{e}_{1} \\
\mathrm{f}_{2}
\end{array}\right]
$$

To follow the more common sign convention we may change the sign of e_{2}.
If the parameter $\mathrm{a}= \pm 1$, an argument similar to that used above shows that a degenerate case results in which no energy is exchanged between the ports.

Final solution

Choosing $\mathrm{a}=\mathrm{d}$ and using the negative root we obtain the fourth solution.

$$
\mathbf{S}=\left[\begin{array}{cc}
a & -\sqrt{1-a^{2}} \tag{A.36}\\
-\sqrt{1-a^{2}} & -a
\end{array}\right]
$$

Once again, the matrices $\mathbf{1}+\mathbf{S}$ and $\mathbf{1 - S}$ are singular for all values of the parameter a, but by rearranging equations A. 20 and A. 21 as before the corresponding relation between efforts and flows is

$$
\left.\left[\begin{array}{l}
e_{2} \tag{A.37}\\
f_{1}
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{(1+a) /(1-a)} & 0 \\
0 & -\sqrt{(1+a) /(1-a)}
\end{array}\right] \begin{array}{l}
e_{1} \\
f_{2}
\end{array}\right]
$$

Again we obtain the equation for an ideal transformer

$$
\left[\begin{array}{l}
\mathrm{e}_{2} \tag{A.38}\\
\mathrm{f}_{1}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{T} & 0 \\
0 & -\mathrm{T}
\end{array}\right]\left[\begin{array}{l}
\mathrm{e}_{1} \\
\mathrm{f}_{2}
\end{array}\right]
$$

Two-port junction elements

There are only two possible power-continuous, asymmetric two-port junction elements, the gyrator and the transformer.

Unlike the ideal symmetric junction elements ($\mathbf{0}$ and $\mathbf{1}$) the ideal asymmetric junction elements may be nonlinear.

The relation between efforts and flows must have a multiplicative form.
The general asymmetric junction elements are a modulated gyrator (MGY) and a modulated transformer (MTF) respectively.

