
Contact instability


• Problem:  
–	 Contact and interaction with objects couples their dynamics into the 

manipulator control system 
–	 This change may cause instability 

•	 Example: 
–	 integral-action motion controller 
–	 coupling to more mass evokes instability 

–	 Impedance control affords a solution: 
•	 Make the manipulator impedance behave like a passive physical 

system 
Hogan, N. (1988) On the Stability of Manipulators Performing Contact 
Tasks, IEEE Journal of Robotics and Automation, 4: 677-686. 
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Example: Integral-action motion controller


• System: 	 (ms2 + bs +  x k) = f -cu 
–	 Mass restrained by linear spring & x c 

= damper, driven by control actuator & u ms2 + bs + k

external force


g• Controller:	 u = (r − x)
– Integral of trajectory error	 s 

•	 System + controller: (ms3 + bs2 + ks +  x cg) = -cgr f s 
x cg
= 3r ms + bs2 + ks + cg 

s: Laplace variable 

bk • Isolated stability: x: displacement variable 
f: external force variable –	 Stability requires upper bound on > g u: control input variable

controller gain cm r: reference input variable 
m: mass constant
b: damping constant 
k: stiffness constant
c: actuator force constant 
g: controller gain constant 
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Example (continued)

me: object mass constant 

e•	 Object mass: f = s m 2 x 

•	 Coupled system: [(m + )s m 3 + bs2 + ks +  x cg] = cgre 

x 
= 

cg 
r (m + m )s3 + bs2 + ks + cge 

•	 Coupled stability: bk > cg(m + m )e 

•	 Choose any positive controller gain bk 
> gthat will ensure isolated stability: cm 

•	 That controlled system is me > 
bk 

− mdestabilized by coupling to a cg
sufficiently large mass
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Problem & approach


• Problem:  
– Find conditions to avoid instability due to contact & interaction 

•	 Approach: 
–	 Design the manipulator controller to impose a desired interaction-port 

behavior 
–	 Describe the manipulator and its controller as an equivalent physical 

system 
–	 Find an (equivalent) physical behavior that will avoid contact/coupled 

instability 
•	 Use our knowledge of physical system behavior and how it is 

constrained 
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General object dynamics


* 
e , �• Assume:	 L( q q ) = E ( q q )− Ep ( q )e k e , � e e 

–	 Lagrangian dynamics 

dt ⎝⎜
⎜
∂ q � e ⎠

⎟⎟ − 
∂
∂ 
q 
L 
= P e − q q D )– Passive	

d ⎛ ∂ L ⎞ 
e ( e , � e 

– Stable in isolation	
e 

p ∂ = L ∂ q � e ∂ = E*
k ∂ q � ee 

t *• Legendre transform:	 Ek ( q p ) = q p e , �e � e − Ek ( q q )e , e	 e 
– Kinetic co-energy to kinetic 

He ( q p ) = q p e , �t 
energy	 e , e e � e − L( q q e ) 

– Lagrangian form to Hamiltonian q � e = ∂ He ∂ p eform

p � ∂ − = He
 ∂ q − D e + P ee e 

q e: (generalized) coordinates • Hamiltonian = total system energy	
L: Lagrangian 
Ek

*: kinetic co-energy He ( q p ) = E ( q p )+ Ep ( q )	 Ep: potential energy e , e k e , e e 
D e: dissipative (generalized) forces 
P e: exogenous (generalized) forces 
He: Hamiltonian 

Mod. Sim. Dyn. Sys.	 Interaction Stability Neville Hogan page 5 



Sir William Rowan Hamilton


• William Rowan Hamilton 
– Born 1805, Dublin, Ireland 
– Knighted 1835 
– First Foreign Associate elected to 

U.S. National Academy of Sciences
– Died 1865 

• Accomplishments 
– Optics 
– Dynamics 
– Quaternions 
– Linear operators 
– Graph theory 
– …and more 

–	 http://www.maths.tcd.ie/pub/

HistMath/People/Hamilton/
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Passivity


• Basic idea: system cannot supply power indefinitely 
–	 Many alternative definitions, the best are energy-based 

• Wyatt et al. (1981) Wyatt, J. L., Chua, L. O., Gannett, J. W., 
Göknar, I. C. and Green, D. N. (1981) 
Energy Concepts in the State-Space Theory • Passive: total system energy is lower-bounded 
of Nonlinear n-Ports: Part I — Passivity. 

–	 More precisely, available energy is lower-bounded IEEE Transactions on Circuits and Systems, 
Vol. CAS-28, No. 1, pp. 48-61. 

• Power flux may be positive or negative 
•	 Convention: power positive in 

–	 Power in (positive)—no limit 
–	 Power out (negative)—only until stored energy exhausted 

•	 You can store as much energy as you want but you can withdraw only 
what was initially stored (a finite amount) 

• Passivity ≠ stability 
–	 Example: 

•	 Interaction between oppositely charged beads, one fixed, on free to 
move on a wire 
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Stability


•	 Stability: 
–	 Convergence to equilibrium 

•	 Use Lyapunov’s second method 
–	 A generalization of energy-based analysis 
–	 Lyapunov function: positive-definite non-decreasing state function 
–	 Sufficient condition for asymptotic stability: Negative semi-definitive rate 

of change of Lyapunov function 
•	 For physical systems total energy may be a useful candidate Lyapunov 

function 
–	 Equilibria are at an energy minima 
–	 Dissipation ⇒ energy reduction ⇒ convergence to equilibrium 
–	 Hamiltonian form describes dynamics in terms of total energy 
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Steady state & equilibrium


•	 Steady state: 
–	 Kinetic energy is a positive-definite 

non-decreasing function of 
generalized momentum 

•	 Assume: 
–	 Dissipative (internal) forces vanish 

in steady-state 
•	 Rules out static (Coulomb) 

friction 
–	 Potential energy is a positive-

definite non-decreasing function of 
generalized displacement 

•	 Steady-state is a unique 
equilibrium configuration 

•	 Steady state is equilibrium at the 
origin of the state space {p e,q e} 

0 q ∂ = H= ∂ p	 = ∂ Ek ∂ p� e e e e 

=⇒=∂∂ eekE 0 p 0 p 

0 p − = ∂ H= ∂ q	 − D e + P e� e	 e e 

(	 ,Assume q 0 D ) = 0e e 

=Isolated ⇒ 0 P e 

∂ E∂ He ∂ Ek + p= 
∂ q ∂ q ∂ qe 0 p = e 0 p = e e e 

∂ E∂ Ek ∂ He = p= 0 ∴
∂ q ∂ q ∂ qe 0 p =	 e 0 p = e e e 

=⇒=∂∂ eepE 0 q 0 q 
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Notation


• Represent partial derivatives using ∂ He 
eqsubscripts H =

∂ q e 
• H is a scalar ∂ Hee 

– the Hamiltonian state function H ep = ∂ p e 
• H is a vectoreq 

– Partial derivatives of the Hamiltonian q � = H ep ( q p )
w.r.t. each element of q e e , e 

e 
e (p � e − = H eq ( q p )− q p D )+ P, e e , e e e• H is a vectorep 

– Partial derivatives of the Hamiltonian 
w.r.t. each element of p e 
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Isolated stability


t tdt	= q H � + p H �eq	 e ep e• Use the Hamiltonian as a Lyapunov dHe 

function	 dHe 
t tdt	= H H + H (− H − D e + P )eq ep ep eq e –	 Positive-definite non-decreasing 


t t
function of state	 dHe dt	= P q − D q � e e � e e 
–	 Rate of change of stored energy = 


power in – power dissipated


• Sufficient condition for asymptotic Isolated ⇒ P e = 0 
tstability: 	 ∴ dHe �dt	 − = D q e	 e 

–	 Dissipative generalized forces are a D q > 0 ⇒ dHe 
t dt	< 0 ∀ p ≠ 0e	 e epositive-definite function of �


generalized momentum

• Dissipation may vanish if p = 0e 

and system is not at equilibrium 
• But  p = 0 does not describe anye 

system trajectory 
– LaSalle-Lefshetz theorem 

–	 Energy decreases on all non-

equilibrium system trajectories
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Physical system interaction


•	 Interaction of general dynamic • Interaction of physical systems 
systems – If ui and yi are power conjugates 

–	 Many possibilities: cascade, – Gi are impedances or admittances 
parallel, feedback… y = G1( u s – Power-continuous connection: ) 

• Two linear systems: 
y

1	

= G2 ( )  
1

2 

• Power into coupled system 
2	 u s must equal net power into 

component systems 
•	 Cascade coupling y3 = y2 

equations: u2 = y y u 3 = y u 1 + y u 3 1 2 2 
1 

u1	= u3 

)•	 Combination: y3 = G3 ( u s 3


s 2 G s 1 s
G3 ( ) = G ( )  ( )
•	 Not power-continuous 

u y ≠ u y 2 + u y 3	 3 2 1 1 
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Interaction port


•	 Assume coupling occurs at a set of 
points on the object X e 

–	 This defines an interaction port 
(–	 X e is as a function of generalized X e = q L e ) 

coordinates q 
e 

e 
(	 )�–	 Generalized velocity determines V e = q q J e 

port velocity 
e	 e 

t (	 )–	 Port force determines generalized P e = F q J e	 e e 
force 

•	 These relations are always well-
defined 

–	 Guaranteed by the definition of 

generalized coordinates
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Simple impedance


(• Target (ideal) behavior of manipulator F z = K (X z − X o )+ V B z ) 
– Elastic and viscous behavior 

q (p � = H zq ( )+ V B ) q z = X z − X oz z z• In Hamiltonian form: 
q q K z z z– Hamiltonian = potential energy q � z = V z −V o Hz ( ) = ∫ ( )dq 

– Assume  V = 0 for stability analysis F z = p � o z 
– Isolated: V z = 0 or F z = 0 V o = V z = 0 ⇒ q = constant ⇒ F z = constantz 
– Sufficient condition for isolated t tB dt = q H zq � z = − q B � zasymptotic stability: F z = 0 ⇒ H zq = ∴ − dHz 

t V zq B � z > 0 ≠ ∀ 0 

p t• Unconstrained mass in Hamiltonian q � = H ep ( )  He (p ) = 1 M p −1p
form 

e e e 2 e e


p � = F e
e– Hamiltonian = kinetic energy 
– Arbitrarily small mass V e = q � e 

• Couple these with common velocity V e = V z 
t tV F e + V F z = 0e z 
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Mass coupled to simple impedance


•	 Hamiltonian form Ht ( q p ) = H (p )+ H (q )e ,	 z e e z z 

–	 Total energy = sum of components p � e = −H tq ( )− H B tp (p ))q z ( e 

pq � z = H tp ( )e 
•	 Assume positive-definite, non-

decreasing potential energy 
–	 Equilibrium at (p e,q z) = (0 ,0 )


t t
dHt dt	= p H tq � ztp � e	+ q H 
•	 Rate of change of Hamiltonian: t t t	 tdHt dt	= − H H tq − B H + H H tp = − B q tp tp tq � z 

t•	 Sufficient condition for asymptotic B q > 0 ≠ ∀ 0p� z e 
stability 

–	 And because mass is 

unconstrained, stability is global
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General object coupled to simple impedance


•	 Total Hamiltonian (energy) is sum Ht ( q p ) = H ( q p ) + H (q )e ,	 e e e , e z z 

of components	 Ht ( q p ) = E ( q p ) + Ep (q ) + H ( q L )− X )e ,	 e k e , e e z e ( e o 

•	 Assume 
–	 Both systems at equilibrium 
–	 Interaction port positions coincide 


at coupling

t	 t tdt = H J H + H H − H Hzq	 e ep eq ep ep eq•	 Total energy is a positive-definite, dHt 

t t t t tnon-decreasing state function − D H e − H J H zq − B J H ep ep e ep e 

t t•	 Rate of change of energy: dHt � �dt − = D q − B q e e z 

•	 The previous conditions sufficient for stability of 
–	 Object in isolation 
–	 Simple impedance coupled to arbitrarily small mass 

•	 …ensure global asymptotic coupled stability 
–	 Energy decreases on all non-equilibrium state trajectories 
–	 True for objects of arbitrary dynamic order 
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Simple impedance controller implementation


1	 t − 1( )m m m•	 Robot model: q � m = H mp Hm = 2 p q I p 
t–	 Inertial mechanism, statically p � m − = H mq − D m + P + F J ma m 

balanced (or zero gravity), effort- V m = q J �m	 mcontrolled actuators 
X m	 = L m ( q ) m•	 Hamiltonian = kinetic energy 

•	 Controller: t (	 (P a	 − = J m { L K ( q ) − X ) − q J B � m )}m	 m o m–	 Transform simple impedance to 

manipulator configuration space


•	 Controller coupled to robot: q � m = H cp 

t t 
m + m–	 Same structure as a physical p � m − = H cq − D m − F J B J m 

system with Hamiltonian Hc V m = q J � q m: generalized coordinates m	 m 
Hc = Hm + H (configuration variables) 

z X m = L m ( q ) p m: generalized momenta m 
Hm: Hamiltonian 
I : inertia 
D m: dissipative (generalized) forces 
P a: actuator (generalized) forces 
X m,V m,F m: interaction port position, 

velocity, force 
L m,J m: kinematic equations, Jacobian 
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Simple impedance controller isolated stability


t t tdt = H H − H H cq − D H mcq	 cp cp cp•	 Rate of change of Hamiltonian: dHc 

t	 t t t•	 Energy decreases on all non- − B J H + J H mFcp	 m cp m 
equilibrium trajectories if t t t�dt − = D q − B V + F V mm	 m m m–	 System is isolated F m = 0 

dHc 
t tdt − = D q − B V � m	 m m–	 Dissipative forces are positive- F m = 0 ⇒ dHc 

definite t t� mD q > ,0 B V > 0 ∀ p ≠ 0m m m 

,•	 Minimum energy is at q z = X 0 m = X o •	 Assume: 
–	 But this may not define a unique – Non-redundant mechanism manipulator configuration 
–	 Hamiltonian is a positive-definite – Non-singular Jacobian


non-decreasing function of q but • Then 
z 
usually not of configuration q m	 – Hamiltonian is positive-definite & 

•	 Interaction-port impedance may not non-decreasing in a region about
control internal degrees of freedom q = L − 1( X )m o 

–	 Could add terms to controller but 
for simplicity… 	 • Local asymptotic stability 
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Simple impedance controller coupled stability


( t m e• Coupling kinematics q t = q q q , ) 
– Coupling relates q to q but nom e 

need to solve explicitly 
– Total Hamiltonian (energy) is sum Ht = He ( q p )+ H ( q p )e , e c m , m


of components


• Rate of change of Hamiltonian 
t t t t t t tt t t dt − = D q + F J q − q � m ( D + B J )+ F J q � e � e � mdHt dt = H H + H (− H − D e + F J e ) dHt e e e m m m meq ep ep eq e 

t t t t t t t t t� m+ H H + H (− H cq − D m − F J B J m ) dHt dt − = D q + F V e − D q − B V + F V mcq cp cp m + m � e e e m m m 

t t 
e m• Coupling cannot generate power F V e + F V m = 0 

t t t� �∴ dHt dt − = D q − D q − B V e e m m m 

• The previous conditions sufficient for stability of 
– Object in isolation 
– Simple impedance controlled robot 

• …ensure local asymptotic coupled stability 
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Kinematic errors


~t ~	 ~ •	 Assume controller and interaction P a − = J { q L K ) − X )− q J B � m )}( ( m o (
port kinematics differ


~ ~
–	 Controller kinematics maps X = q L ) ≠ L ( q )~ (
configuration to a point X m m m 

~ ~ ~– Corresponding potential function Hz ( q ) = H ( q ) = H ( q L )− X o )(
is positive-definite, non-decreasing 

m z z z m 

~ ~− 1( X )in a region about q = Lm o 
~ ~ •	 Assume self-consistent controller ∂ L ∂ q = Jm

kinematics	 ~ ~ ~(dX	dt = V = q J ) q �m	 m –	 the (erroneous) Jacobian is the 

correct derivative of the ~

(erroneous) kinematics ~
 t ~ t ~ dHz dt = H t 

∂
∂ 
q
L q � m = H zq q J � m = H Vzq zq 
m 
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Kinematic errors (continued)

~ ~ 

m, m,•	 Hamiltonian of this controller Hc ( q p m ) = Hm ( q p m )+ Hz ( q z ) 
~	 ~ coupled to the robot	 Hc ( q p ) = H ( q p )+ H ( q L )− X o )m,	 m m m, m z ( m 

�	 =q m H mp
–	 Hamiltonian state equations ~t ~t tp �	 − = H mq − D m − H J zq − B J + F J mm	 m 

~ t ~ tdHc dt = H J H + H Hzq mp mq mp–	 Rate of change of the Hamiltonian 
t	 ~t ~t t+ H (− H − D m − H J zq − B J + F J m )mp mq m 

~ t ~ t t�dHc dt − = D q − B V + F J mm m m 
~ t ~ t� – In isolation	 F m = 0 ⇒ dHc dt − = D q − B V m m 

•	 Previous conditions on D m & B are 
sufficient for isolated local 
asymptotic stability 
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Insensitivity to kinematic errors


•	 The same conditions are also 
sufficient to ensure local ~ 

e , e easymptotic coupled stability	 Ht = Ek ( q p )+ E
~

p ( q )+ 

–	 Coupled system Hamiltonian and Hm ( q p m ) + Hz ( q L m ) − X o )m, ( 
its rate of change: ~ t t ~ t� �dHt dt − = D q − D q − B V e e m m 

•	 Stability properties are insensitive 
to kinematic errors 

–	 Provided they are self-consistent 
•	 Note that these results do not 

require small kinematic errors 
–	 Could arise when contact occurs at 


unexpected locations


–	 e.g., on the robot links rather than 

the end-point
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Parallel & feedback connections


u y 3 = u y 2 + u y • Power continuity	 3 2 1 1 

•	 Parallel connection equations 
y3 = ± y2 ± y1 

u1•	 Power balance 
u3 = u2 = 

—OK u y = ± u y ± u y 3 3 2 2 1 1 

• Feedback connection equations 
y3 = y1 = u2 

•	 Power balance 
u1 = u3 − y2 

1 1 = y u − u y —OK	 y u 3 3 2 2 
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Summary remarks


•	 Interaction stability • Structure matters 
–	 The above results can be extended – Dynamics of physical systems are 

• Neutrally stable objects	 constrained in useful ways 

• Kinematic constraints	 • It may be beneficial to impose 
–	 no dynamics physical system structure on a 

• Interface dynamics	 general dynamic system 
– e.g., due to sensors	 – e.g. a robot controller 

–	 A “simple” impedance can provide 

a robust solution to the contact 

instability problem
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Some other Irishmen of note


• Bishop George Berkeley 
• Robert Boyle 
• John Boyd Dunlop 
• George Francis Fitzgerald 
• William Rowan Hamilton 
• William Thomson (Lord Kelvin) 
• Joseph  Larmor 
• Charles  Parsons 
• Osborne Reynolds 
• George Gabriel Stokes 
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