
REVIEW NETWORK MODELING OF PHYSICAL SYSTEMS 
a.k.a. "lumped-parameter" modeling 

EXAMPLE: VIBRATION IN A CABLE HOIST 

Problem 
switch

motor

geartrain

compliant
cable

drum

elevator
cage

voltage
supply

g
 

The cage of an elevator is hoisted by a long 
cable wound over a drum driven through a 
gear-set by an electric motor. The motor is 
relay-operated (i.e., either on or off) and the 
resulting abrupt transients cause the cage 
to oscillate on the hoisting cable. Because 
the cable has low internal friction, the 
oscillations persist for many cycles.  
 
Even more important, the peak stress in the cable is almost double the steady-
state stress required to support the weight of the cable. 
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Scenario 
To solve this problem it has been proposed to introduce an electrical R-C filter 
between the relay and the motor terminals. The designer claims that this will 
smooth the transient, thereby reducing the oscillation amplitude to acceptable 
levels. Your task is to evaluate this proposal.  
 

abruptly engaging the motor excites oscillation 
 

does electrical filtering help? 
 

Modeling goal 
The simplest model competent to elucidate the effect of electrical filtering on the 
mechanical oscillation. 
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First reproduce the problem 
To keep things simple assume that: 
• variation of weight supported with length change may be ignored (i.e., 

consider small changes in elevation) 
• weight is concentrated (“lumped”) in the cage 
• variation of cable compliance with length change may be ignored 
• neglect cable internal damping (first, that emphasizes tendency to oscillation; 

second, it’s small anyway; and third, it’s easy to add later if necessary) 
• drum and gear inertia may be neglected 
• DC electric motor with constant magnetic field 
• motor armature resistance & inductance may be neglected 
• relay resistance may be neglected 
• voltage supply “internal resistance” may be neglected 
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Direct approach 
(i.e., just “write down” the differential equations) 

Newtonian mechanics: 
mcage ẍ cage := kcable (xrim – xcage) – mcage g 

Transmission  
ẋ rim := rdrum ωdrum 
ωdrum := ngear ωmotor 

Motor transduction characteristic: 
ωmotor := emotor / Kmotor 

Switch: 
emotor := esupply if switch closed; 0 if switch open. 

—a computable set of differential equations.  
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Given emotor(t) and initial conditions, xcage(t) is straightforward to compute. 
Analysis and computation is often facilitated by writing the equations in a 
standard state-determined form. One good choice of state variables (there are 
many others) yields the following. 
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Laplace domain analysis: 
This linear model is conveniently analyzed in the Laplace domain. Standard 
methods (e.g., Cramer’s rule (ref. Ogata text; Rosenberg & Karnopp text)) are 
available to transform state-determined representations into the Laplace domain.  
In this case, finding the transfer function from supply voltage to cage position by 
direct manipulation is straightforward. 
(mcage s2 + kcable) xcage = kcable xrim 

s xrim = 
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A step change of motor voltage (due to switch toggling) will result in a ramp 
change of cage position (due to the s term in the denominator) with a 
superimposed sinusoidal oscillation (due to the s2 + kcable/ mcage term). 
A MATLAB simulation confirms this. 
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These oscillations are understandably undesirable. 

—This “first-pass” model reproduces the problem. 
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Next model the proposed solution 
 switch
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geartrain

compliant
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g

 

The differential equations are 
straightforward: 
C ė motor := (eswitch – emotor) / R 
In the Laplace domain: 
emotor

eswitch
 (s)  = 

1
RC s + 1  

Multiplying the electro-mechanical 
and circuit transfer functions yields: 

xcage
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This suggests the proposed solution would work as planned. 
A MATLAB simulation appears to confirm this. 
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The oscillations 
have been 
dramatically 
reduced, albeit at 
the cost of slower 
transients. 
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SNAG! THIS MODEL IS WRONG! 
 

The electrical system cannot transmit 
power to the mechanical system 

without being influenced by its motion. 

 

Multiplying two transfer functions is only meaningful if the second does 
not “load” the first. 
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Motor transduction characteristics require two equations: 
ωmotor := emotor / Kmotor 
imotor := τmotor / Kmotor 

The gear train also requires two equations: 
ωdrum := ngear ωmotor 
τmotor := ngear τdrum 

So does the drum: 
ẋ rim := rdrum ωdrum 
ωdrum := rdrum Fcable 

The revised electrical equations are as follows: 

C ė motor := 
(eswitch – emotor)

R   – (rdrum ngear / Kmotor) kcable (xrim – xcage) 

Once again we have computable equations suitable for analysis. A MATLAB 
simulation is as follows. 
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This is a 
substantially 
different 
response; the 
transient is 
slower.  
 
But that’s not 
all—the 
frequency of 
oscillation is 
higher. 
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This is most evident 
if we plot and 
compare the motor 
voltages.  
 
When the 
interaction is 
erroneously 
omitted, the voltage 
transient has a time 
constant of 1 second 
(as planned) and 
there is no 
oscillation. 
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When the 
interaction is 
included, the time 
constant is much 
longer, more than 
3 seconds.  
 
In addition, a 
lightly-damped 
oscillation at 
about 10 Hz is 
evident—about 
twice the 
frequency of 
oscillation of the 
model with no 
filter. 
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Adding a simple first-order filter results in faster oscillations (though at 
lower amplitude).  

—why? 

 

It also results in much slower responses than expected.  

—why? 

 

Try some further analysis ... 
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Laplace domain analysis: 
Manipulating the equations directly to find the transfer function from eswitch  to 
xcage requires somewhat more algebra, some of which is shown below. 
(RC s + 1) emotor = eswitch – R (rdrum ngear / Kmotor) kcable (xrim – xcage) 
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Simplifying: 
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Writing as a rational polynomial transfer function: 
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Note that this differs from the previous model only in the term R 
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It is due to the two-way interaction between the electrical and mechanical 
domains.  
The previous model assumed a one-way interaction—electrical to mechanical but 
not vice-versa. 
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THIS IS A KEY FEATURE OF MULTI-DOMAIN INTERACTION 

 

Power exchange 
—Bi-lateral interaction 

 

Signal transmission 
—Uni-lateral interaction 
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BOND GRAPHS 
The main purpose of modeling is to develop insight. 

 

Considerable further insight is obtainable by “drawing a picture” of the 
models.  

 

Block diagrams represent one-way effects. 
—they will not serve for this purpose. 

 

Network (circuit) diagrams are better— 
but we need a form that generalizes to other physical systems. 

 

Bond graphs are one such notation. 
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