
2.14/2.140 Problem Set 8

Assigned: Fri. Apr. 4, 2014
Due: Wed. April 9, 2014, in class
Reading: Section 3.5 of Roberge’s Operational Amplifiers, attached to this problem set.

This excerpt catalogs relationships for time- and frequency-domain parameters.

The following problems are assigned to both 2.14 and 2.140 students.

Problem 1 The circuit shown below is adapted from the Lab 5 circuit to include a resistor Rf

which allows adding a zero to the loop transfer function L(s). This allows independent ad-
justment of the loop crossover frequency and phase margin. Note that we assume an infinite
gain model for the op-amp. Also, as before we assume that Rs << Ra and thus that ia ≈ 0.

a) Draw a block diagram which includes Vi, Vo, Vf , ii, if , and ia. The entries in the various blocks
should be given in terms of the system parameters.

b) Use the block diagram to write an expression for the loop return ratio L(s) for the current
control loop. Draw a pole zero-diagram for L(s) with the singularity locations labeled in
terms of the system parameters.

For the remainder of this problem, assume that Ra = 1 kΩ, Rs = 100 Ω, RL = 100 Ω, and
L = 50 mH.

c) Choose Ri to set the DC gain such that iL = −1 mA/V × Vi.

d) Choose Rf and Cf to set the loop crossover at ωc = 104 rad/sec with phase margin φm = 45◦.
Show your reasoning; you should be able to do this design with hand calculations. Use Matlab
to create a Bode plot of L(s) which shows ωc and φm for your chosen design values.

e) Use Matlab to compute the transfer functions Vo(s)/Vi(s) and Vf (s)/Vi(s). For this purpose,
use of the series and feedback commands will be helpful. Create Bode plots for these
two transfer functions and explain the asymptotic magnitude characteristics in terms of the
transfer function poles and zeros.

f) For the input-output transfer function Vf/Vi Bode plot, what is the -3 dB frequency ωh? (See
Roberge Figure 3.17) What is the frequency response peaking ratio Mp? At what frequency
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ωp does this occur? What are the closed-loop damping ratio ζ and natural frequency ωn

of the dominant pair in Vf/Vi? How do these values compare with those predicted via the
approximations ζ ≈ φm/100 and ωn ≈ ωc?

g) Let Vi(t) = us(t), a unit step. Use Matlab to compute Vo(t) and Vf (t) assuming zero initial
conditions. Explain the character of the two responses in terms of the poles and zeros of
the respective transfer functions. With respect to the response Vf (t) what is the 10–90%
rise time tr? (See Roberge Figure 3.17). What is the ratiometric peak overshoot P0? What
rise time would be predicted from tr = 2.2/ωh (Roberge equation 3.57) on the basis of ωh

determined in part e) above? How does this compare with the actual step response rise time?
The relationship tr = 2.2/ωh is extremely useful.

Problem 2 This problem considers a one degree of freedom magnetic levitation system using a
Lorentz actuator as shown below

In this figure, the motion of the levitated mass is given by xs relative to inertial space. The
supporting base which carries the magnet structure moves relative to inertial space as xb. This
base motion can be used to model floor vibration, which is important to consider in precision
applications. We assume no gravity in this problem. The objective of the levitation system
is to control xS to follow a desired trajectory without interference from base vibrations. In
this problem, we consider the effect of using voltage- or current-control for the actuator drive
relative to the effect of base vibrations.

The Lorentz actuator is considered to be ideal, and thus to have no inductance or resistance,
with coil current i and back emf voltage e. The actuator is driven by a voltage source Vi
through a series resistance R. The coupled electromechanical system can be represented as
shown below

a) Voltage Drive Draw a block diagram which includes Vi, i, e, F , xs, ẋs, ẍs and xb.
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Use this block diagram to calculate the transfer function Xs(s)/Xb(s) in terms of the system
parameters. You may assume Vi = 0 to aid in block diagram reduction, but note that this is
not strictly necessary, given that the system model is linear.

On the basis of this transfer function, what equivalent mechanical element is connected be-
tween the base and the levitated mass? How does this result in transmission of base vibration
into the levitated mass?

Hand sketch a Bode plot for Xs(s)/Xb(s) with values labeled in terms of the system param-
eters. Indicate how the base vibration transmission is shown in the Bode plot.

b) Current Drive We now close a current control loop on the coil by driving Vi on the basis of
measurement of coil current i. In this context, we assume that i is directly measured, and
that Vi is a dependent voltage source whose value is set by the current controller, i.e., a power
amplifier. In this simple model, we will assume that the coil has no inductance, and thus that
the current can be controlled by a pure integral controller Gc(s) = g0/s. Draw a modified
block diagram which includes the same signals as in part a), but adds the current reference
ir, current error ie, and controller transfer function Gc(s) = g0/s.

c) We will assume that g0 is large enough that the current-loop dynamics are very fast relative to
the mechanical subsystem dynamics. Under this assumption, we assert that the current loop
can be designed with the mass motion set to zero, xs = 0. Calculate the open loop plant
transfer function I(s)/Vi(s), and determine its high-frequency asymptotic behavior. Sketch
a Bode plot and show the high-frequency region.

Use this high-frequency model to write an approximate expression for the current-loop crossover
frequency and phase margin as they depend upon g0, and thus argue that the current loop
will be stable for this controller and for a wide range of gains g0.

d) Use your modified block diagram to calculate the transfer function Xs(s)/Xb(s) in terms of the
system parameters with the current control loop active. You may assume ir = 0 to aid in
block diagram reduction, but note that this is not strictly necessary, given that the system
model is linear.

On the basis of this transfer function, what equivalent mechanical element is connected be-
tween the base and the levitated mass? How does this this element vary with current loop
gain g0?

Hand sketch a Bode plot for Xs(s)/Xb(s) with values labeled in terms of the system param-
eters, and with several overlaid plots for varying g0. How does the current loop bandwidth
affect the ability of base vibrations to affect the levitated platform motion xs?
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92 Linear System Response 

quency scale in Fig. 3.14a. These factors are combined to yield the Bode 
plot for the complete transfer function in Fig. 3.14b. The same information 
is presented in gain-phase form in Fig. 3.15. 

3.5  RELATIONSHIPS BETWEEN TRANSIENT RESPONSE  
AND FREQUENCY RESPONSE  

It is clear that either the impulse response (or the response to any other 
transient input) of a linear system or its frequency response completely 
characterize the system. In many cases experimental measurements on a 
closed-loop system are most easily made by applying a transient input. 
We may, however, be interested in certain aspects of the frequency response 
of the system such as its bandwidth defined as the frequency where its gain 
drops to 0.707 of the midfrequency value. 

Since either the transient response or the frequency response completely 
characterize the system, it should be possible to determine performance in 
one domain from measurements made in the other. Unfortunately, since 
the measured transient response does not provide an equation for this 
response, Laplace techniques cannot be used directly unless the time re-
sponse is first approximated analytically as a function of time. This section 
lists several approximate relationships between transient response and fre-
quency response that can be used to estimate one performance measure 
from the other. The approximations are based on the properties of first-
and second-order systems. 

It is assumed that the feedback path for the system under study is fre-
quency independent and has a magnitude of unity. A system with a fre-
quency-independent feedback path fo can be manipulated as shown in Fig. 
3.16 to yield a scaled, unity-feedback system. The approximations given 
are valid for the transfer function Va!/Vi, and V, can be determined by 
scaling values for V0 by 1/fo. 

It is also assumed that the magnitude of the d-c loop transmission is very 
large so that the closed-loop gain is nearly one at d-c. It is further assumed 
that the singularity closest to the origin in the s plane is either a pole or a 
complex pair of poles, and that the number of poles of the function exceeds 
the number of zeros. If these assumptions are satisfied, many practical 
systems have time domain-frequency domain relationships similar to those 
of first- or second-order systems. 

The parameters we shall use to describe the transient response and the 
frequency response of a system include the following. 

(a) Rise time t,. The time required for the step response to go from 10 
to 90 % of final value. 
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94 Linear System Response 
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Figure 3.16 System topology for approximate relationships. (a) System with 
frequency-independent feedback path. (b) System represented in scaled, unity-
feedback form. 

(b) The maximum value of the step response P0 . 
(c) The time at which Po occurs t,. 
(d) Settling time t,. The time after which the system step response re-

mains within 2 % of final value. 
(e) The error coefficient ei. (See Section 3.6.) This coefficient is equal 

to the time delay between the output and the input when the system has 
reached steady-state conditions with a ramp as its input. 

(f) The bandwidth in radians per second wh or hertz fh (fh = Wch/ 2 r). 
The frequency at which the response of the system is 0.707 of its low-
frequency value. 

(g) The maximum magnitude of the frequency response M,. 
(h) The frequency at which M, occurs w,. 

These definitions are illustrated in Fig. 3.17. 



95 Relationships Between Transient Response and Frequency Response 

For a first-order system with V(s)/Vi(s) = l/(rs + 1), the relationships 
are 

2.2 = 0.35 (3.51) 
t,.=2.2T (351 

Wh fh 

PO = M,= 1 (3.52) 

t, = oo (3.53) 

ta = 4r (3.54) 

ei = r (3.55) 

W, = 0 (3.56) 

For a second-order system with V,(s)/Vi(s) = 1/(s 2/,, 2 + 2 s/w, + 1) 
and 6 A cos-'r (see Fig. 3.7) the relationships are 

2.2 0.35 (357 
W h fh 

P0 = 1 + exp = 1 + e-sane (3.58)V1 - ( 
t7 - (3.59) 

Wn #1-2 ~on sin6  

4 4  
t, ~ =(3.60)

o cos 

i= =2 cos (3.61) 
Wn (on 

1 _ 1 
M, - sI < 0.707, 6 > 45' (3.62)

2 1_2 sin 20 

, = co V1 - 2 2 = w, V-cos 26 < 0.707, 6 > 450 (3.63) 

Wh = fn(l-22 N2 -4 2+ 4 ) 12(3.64) 

If a system step response or frequency response is similar to that of an 
approximating system (see Figs. 3.6, 3.8, 3.11, and 3.12) measurements of 
tr, Po, and t, permit estimation of wh, w,, and M, or vice versa. The steady-
state error in response to a unit ramp can be estimated from either set of 
measurements. 
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Figure 3.17 Parameters used to describe transient and frequency responses. 
(a) Unit-step response. (b) Frequency response. (c) Ramp response. 
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97 Error Coefficients 

One final comment concerning the quality of the relationship between 
0.707 bandwidth and 10 to 90% step risetime (Eqns. 3.51 and 3.57) is in 
order. For virtually any system that satisfies the original assumptions, in-
dependent of the order or relative stability of the system, the product trfh 

is within a few percent of 0.35. This relationship is so accurate that it really 
isn't worth measuringfh if the step response can be more easily determined. 

3.6 ERROR COEFFICIENTS 

The response of a linear system to certain types of transient inputs may 
be difficult or impossible to determine by Laplace techniques, either be-
cause the transform of the transient is cumbersome to evaluate or because 
the transient violates the conditions necessary for its transform to exist. 
For example, consider the angle that a radar antenna makes with a fixed 
reference while tracking an aircraft, as shown in Fig. 3.18. The pointing 
angle determined from the geometry is 

= tan-' t (3.65) 
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Figure 3.18 Radar antenna tracking an airplane. 
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