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Chapter 7 
Dynamics 

 
In this chapter, we analyze the dynamic behavior of robot mechanisms. The dynamic 

behavior is described in terms of the time rate of change of the robot configuration in relation to 
the joint torques exerted by the actuators. This relationship can be expressed by a set of 
differential equations, called equations of motion, that govern the dynamic response of the robot 
linkage to input joint torques. In the next chapter, we will design a control system on the basis of 
these equations of motion. 

Two methods can be used in order to obtain the equations of motion: the Newton-Euler 
formulation, and the Lagrangian formulation. The Newton-Euler formulation is derived by the 
direct interpretation of Newton's Second Law of Motion, which describes dynamic systems in 
terms of force and momentum. The equations incorporate all the forces and moments acting on 
the individual robot links, including the coupling forces and moments between the links. The 
equations obtained from the Newton-Euler method include the constraint forces acting between 
adjacent links. Thus, additional arithmetic operations are required to eliminate these terms and 
obtain explicit relations between the joint torques and the resultant motion in terms of joint 
displacements. In the Lagrangian formulation, on the other hand, the system's dynamic behavior 
is described in terms of work and energy using generalized coordinates. This approach is the 
extension of the indirect method discussed in the previous chapter to dynamics. Therefore, all the 
workless forces and constraint forces are automatically eliminated in this method.  The resultant 
equations are generally compact and provide a closed-form expression in terms of joint torques 
and joint displacements. Furthermore, the derivation is simpler and more systematic than in the 
Newton-Euler method.  

The robot’s equations of motion are basically a description of the relationship between 
the input joint torques and the output motion, i.e. the motion of the robot linkage. As in 
kinematics and in statics, we need to solve the inverse problem of finding the necessary input 
torques to obtain a desired output motion. This inverse dynamics problem is discussed in the last 
section of this chapter. Efficient algorithms have been developed that allow the dynamic 
computations to be carried out on-line in real time. 
 
 
7.1 Newton-Euler Formulation of Equations of Motion 
 
 
7.1.1. Basic Dynamic Equations 
 

In this section we derive the equations of motion for an individual link based on the direct 
method, i.e. Newton-Euler Formulation. The motion of a rigid body can be decomposed into the 
translational motion with respect to an arbitrary point fixed to the rigid body, and the rotational 
motion of the rigid body about that point.  The dynamic equations of a rigid body can also be 
represented by two equations: one describes the translational motion of the centroid (or center of 
mass), while the other describes the rotational motion about the centroid. The former is Newton's 
equation of motion for a mass particle, and the latter is called Euler's equation of motion. 

We begin by considering the free body diagram of an individual link. Figure 7.1.1 shows 
all the forces and moments acting on link i. The figure is the same as Figure 6.1.1, which 
describes the static balance of forces, except for the inertial force and moment that arise from the 
dynamic motion of the link. Let  be the linear velocity of the centroid of link i with reference civ
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to the base coordinate frame O-xyz, which is an inertial reference frame. The inertial force is then 
given by , where mi is the mass of the link and  is the time derivative of . Based 
on D’Alembert’s principle, the equation of motion is then obtained by adding the inertial force to 
the static balance of forces in eq.(6.1.1) so that 

ciim v− civ civ

nimm ciiiiiii ,,1,1,,1 ==−+− +− 0vgff      (7.1.1)  
 
where, as in Chapter 6,  are the coupling forces applied to link i by links i-1 and 

i+1, respectively, and g is the acceleration of gravity.  
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Figure 7.1.1  Free body diagram of link i in motion 
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body does not change when viewed from a frame fixed to the body, its matrix representation 
when viewed from a fixed frame, i.e. inertial reference frame, changes as the body rotates. 

The inertial torque acting on link i is given by the time rate of change of the angular 
momentum of the link at that instant. Let  be the angular velocity vector and  be the 
centroidal inertia tensor of link i, then the angular momentum is given by . Since the inertia 
tensor varies as the orientation of the link changes, the time derivative of the angular momentum 
includes not only the angular acceleration term , but also a term resulting from changes in the 
inertia tensor viewed from a fixed frame. This latter term is known as the gyroscopic torque and 
is given by . Adding these terms to the original balance of moments (4-2) yields 

iω iI

iiωI

iiωI

)( iii ωIω ×

niiiiiiiiCiiiiCiiiiiiii ,,1,)()()()( 1,,,1,,11,,1 ==×−−−×−+×+−− +−−+− 0ωIωωIfrfrrNN  
 (7.1.3) 

 
using the notations of Figure 7.1.1. Equations (2) and (3) govern the dynamic behavior of an 
individual link. The complete set of equations for the whole robot is obtained by evaluating both 
equations for all the links, i = 1, ·  ,n. 
 
7.1.2. Closed-Form Dynamic Equations 
 
The Newton-Euler equations we have derived are not in an appropriate form for use in dynamic 
analysis and control design. They do not explicitly describe the input-output relationship, unlike 
the relationships we obtained in the kinematic and static analyses. In this section, we modify the 
Newton-Euler equations so that explicit input-output relations can be obtained. The Newton-Euler 
equations involve coupling forces and moments . As shown in eqs.(6.2.1) and 
(6.2.2), the joint torque τi, which is the input to the robot linkage, is included in the coupling force 
or moment. However, τi is not explicitly involved in the Newton-Euler equations. Furthermore, 
the coupling force and moment also include workless constraint forces, which act internally so 
that individual link motions conform to the geometric constraints imposed by the mechanical 
structure. To derive explicit input-output dynamic relations, we need to separate the input joint 
torques from the constraint forces and moments. The Newton-Euler equations are described in 
terms of centroid velocities and accelerations of individual arm links. Individual link motions, 
however, are not independent, but are coupled through the linkage. They must satisfy certain 
kinematic relationships to conform to the geometric constraints. Thus, individual centroid 
position variables are not appropriate for output variables since they are not independent. 

iiii ,1,1 and −− Nf

The appropriate form of the dynamic equations therefore consists of equations described 
in terms of all independent position variables and input forces, i.e., joint torques, that are 
explicitly involved in the dynamic equations. Dynamic equations in such an explicit input- output 
form are referred to as closed-form dynamic equations. As discussed in the previous chapter, joint 
displacements q are a complete and independent set of generalized coordinates that locate the 
whole robot mechanism, and joint torques τ are a set of independent inputs that are separated 
from constraint forces and moments. Hence, dynamic equations in terms of joint displacements q 
and joint torques τ are closed-form dynamic equations. 
 
Example 7.1 

Figure 7.1.1 shows the two dof planar manipulator that we discussed in the previous 
chapter. Let us obtain the Newton-Euler equations of motion for the two individual links, and 
then derive closed-form dynamic equations in terms of joint displacements 21 andθθ , and joint 
torques τ1 and τ2. Since the link mechanism is planar, we represent the velocity of the centroid of 
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each link by a 2-dimensional vector vi and the angular velocity by a scalar velocity ωi . We 
assume that the centroid of link i is located on the center line passing through adjacent joints at a 
distance  from joint i, as shown in the figure. The axis of rotation does not vary for the planar 
linkage. The inertia tensor in this case is reduced to a scalar moment of inertia denoted by Ii. 

ci

 
From eqs. (1) and (3), the Newton-Euler equations for link 1 are given by 

 

,1112,11,0 0vgff =−+− cmm        
0111,01,02,11,12,11,0 =−×−×+− ωIcc frfrNN     (7.1.4)  

 
Note that all vectors are 2 x 1, so that moment N i-1,i and the other vector products are scalar 
quantities. Similarly, for link 2, 
 

,2222,1 0vgf =−+ cmm         
0222,12,12,1 =−×− ωIc frN       (7.1.5)  
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Figure 7.1.2 Mass properties of two dof  planar robot 
 
To obtain closed-form dynamic equations, we first eliminate the constraint forces and separate 
them from the joint torques, so as to explicitly involve the joint torques in the dynamic equations. 
For the planar manipulator, the joint torques τ1 and τ2 are equal to the coupling moments: 
 

2,1,,1 ==− iN iii τ        (7.1.6) 
 
Substituting eq.(6) into eq.(5) and eliminating f1,2 we obtain 
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02222,1222,12 =−×+×− ωτ Imm ccc grvr     (7.1.7) 
 
Similarly, eliminating f0,1 yields, 
 

01121,011,0221,0111,021 =−×+×+×−×−− ωττ Immmm cccc grgrvrvr  (7.1.8) 
 
Next, we rewrite 1, and,, +iiici rv ω using joint displacements 21 and θθ , which are independent 

variables. Note that ω2 is the angular velocity relative to the base coordinate frame, while 2θ  is 
measured relative to link 1. Then, we have 
 

21211 , θθωθω +==        (7.1.9) 
 

The linear velocities can be written as 
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Substituting eqs. (9) and (10) along with their time derivatives into eqs. (7) and (8), we obtain the 
closed-form dynamic equations in terms of 21 andθθ  : 
 

121
2
22121111 2 GhhHH +−−+= θθθθθτ     (7.1.11-a) 

2
2

11212222 GhHH +++= θθθτ      (7.1.11-b) 
 
where 
 

2221
2

2
2
121

2
1111 )cos2( ImImH ccc +++++= θ    (7.1.12-a) 

2
2

2222 ImH c +=        (7.1.12-b) 

2221
2

2212 )cos( ImH cc ++= θ      (7.1.12-c) 

2212 sinθcmh =        (7.1.12-d) 
}cos)cos({cos 1121221111 θθθθ +++= cc gmgmG    (7.1.12-e) 

)cos( 21222 θθ += cgmG       (7.1.12-f) 
 
The scalar g represents the acceleration of gravity along the negative y-axis.   
 
 

More generally, the closed-form dynamic equations of an n-degree-of-freedom robot can 
be given in the form 
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where coefficients Hij , hijk, and Gi are functions of joint displacements . When 
external forces act on the robot system, the left-hand side must be modified accordingly. 

nqqq ,,, 21

 
7.1.3. Physical Interpretation of the Dynamic Equations 
 

In this section, we interpret the physical meaning of each term involved in the closed- 
form dynamic equations for the two-dof planar robot. 

The last term in each of eqs. (11-a, b), Gi , accounts for the effect of gravity. Indeed, the 
terms G1 and G2, given by (12-e, f), represent the moments created by the masses m1 and m2 about 
their individual joint axes. The moments are dependent upon the arm configuration. When the 
arm is fully extended along the x-axis, the gravity moments become maximums. 
 
Next, we investigate the first terms in the dynamic equations. When the second joint is 
immobilized, i.e. , the first dynamic equation reduces to , where the 
gravity term is neglected. From this expression it follows that the coefficient H11 accounts for the 
moment of inertia seen by the first joint when the second joint is immobilized. The coefficient H11 
given by eq. (12-a) is interpreted as the total moment of inertia of both links reflected to the first 
joint axis. The first two terms, , in eq. (12-a), represent the moment of inertia of link 1 
with respect to joint 1, while the other terms are the contribution from link 2. The inertia of the 
second link depends upon the distance L between the centroid of link 2 and the first joint axis, as 
illustrated in Figure 7.1.3. The distance L is a function of the joint angle 

0and0 22 == θθ 1111 θτ H=

1
2

11 Im c +

2θ  and is given by 
 

221
2

2
2

1
2 cos2 θccL ++=       (7.1.14) 

 
Using the parallel axes theorem of moment of inertia (Goldstein, 1981), the inertia of link 2 with 
respect to joint 1 is m2L2+I2 , which is consistent with the last two terms in eq. (12-a). Note that 
the inertia varies with the arm configuration. The inertia is maximum when the arm is fully 
extended ( 02 =θ ), and minimum when the arm is completely contracted ( πθ =2 ). 
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Figure 7.1.3 Varying inertia depending on the arm configuration 
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Let us now examine the second terms on the right hand side of eq. (11). Consider the 
instant when 121 , then the first equation reduces to 2121 , where the 
gravity term is again neglected. From this expression it follows that the second term accounts for 
the effect of the second link motion upon the first joint. When the second link is accelerated, the 
reaction force and torque induced by the second link act upon the first link. This is clear in the 
original Newton-Euler equations (4), where the coupling force -fl,2 and moment -N1,2 from link 2 
are involved in the dynamic equation for link 1. The coupling force and moment cause a torque 

0and0 === θθθ θτ H=

intτ  about the first joint axis given by 
 

2221
2

222

222,022
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    (7.1.15) 

 
where N1,2 and fl,2 are evaluated using eq. (5) for 121 . This agrees with the 
second term in eq. (11-a). Thus, the second term accounts for the interaction between the two 
joints. 

0and0 === θθθ

=== θθθ
The third terms in eq. (11) are proportional to the square of the joint velocities. We 

consider the instant when 212 , as shown in Figure 7.1.4-(a). In this case, a 
centrifugal force acts upon the second link. Let fcent be the centrifugal force. Its magnitude is 
given by 

0and0

 
2

12 θLmcent =f        (7.1.16) 
 

where L is the distance between the centroid C2 and the first joint O. The centrifugal force acts in 
the direction of position vector 2,COr . This centrifugal force causes a moment τcent about the 
second joint. Using eq. (16), the moment τcent is computed as 
 

2
12122,1 θτ ccentccent m−=×= fr      (7.1.17) 

 
This agrees with the third term 1h  in eq. (11-b). Thus we conclude that the third term is caused 
by the centrifugal effect on the second joint due to the motion of the first joint. Similarly, rotating 
the second joint at a constant velocity causes a torque of  due to the centrifugal effect upon 
the first joint. 
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Figure 7.1.4 Centrifugal (a) and Coriolis (b) effects 
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Finally we discuss the fourth term of eq. (11-a), which is proportional to the product of 
the joint velocities. Consider the instant when the two joints rotate at velocities  at the 
same time. Let Ob-xbyb be the coordinate frame attached to the tip of link 1, as shown in Figure 
7.1.4-(b). Note that the frame Ob-xbyb is parallel to the base coordinate frame at the instant 
shown. However, the frame rotates at the angular velocity  together with link 1. The mass 
centroid of link 2 moves at a velocity of  relative to link 1, i.e. the moving coordinate frame 
Ob-xbyb. When a mass particle m moves at a velocity of vb relative to a moving coordinate frame 
rotating at an angular velocity ω, the mass particle has the so-called Coriolis force given by 

. Let fCor be the force acting on link 2 due to the Coriolis effect. The Coriolis force 
is given by 

21 and θθ

1θ

22θc

)(2 bm vω×−
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c

c
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m
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This Coriolis force causes a moment τ C or about the first joint, which is given by  

 

2212122,0 sin2 θθθτ cCorcCor m=×= fr      (7.1.19) 
 

The right-hand side of the above equation agrees with the fourth term in eq. (11-a). Since the 
Coriolis force given by eq. (18) acts in parallel with link 2, the force does not create a moment 
about the second joint in this particular case.  

Thus, the dynamic equations of a robot arm are characterized by a configuration-
dependent inertia, gravity torques, and interaction torques caused by the accelerations of the other 
joints and the existence of centrifugal and Coriolis effects.  
 
 
 
7.2. Lagrangian Formulation of Robot Dynamics 
 
7.2.1. Lagrangian Dynamics 

In the Newton-Euler formulation, the equations of motion are derived from Newton's 
Second Law, which relates force and momentum, as well as torque and angular momentum. The 
resulting equations involve constraint forces, which must be eliminated in order to obtain closed-
form dynamic equations.  In the Newton-Euler formulation, the equations are not expressed in 
terms of independent variables, and do not include input joint torques explicitly. Arithmetic 
operations are needed to derive the closed-form dynamic equations. This represents a complex 
procedure that requires physical intuition, as discussed in the previous section. 

An alternative to the Newton-Euler formulation of manipulator dynamics is the 
Lagrangian formulation, which describes the behavior of a dynamic system in terms of work and 
energy stored in the system rather than of forces and moments of the individual members 
involved. The constraint forces involved in the system are automatically eliminated in the 
formulation of Lagrangian dynamic equations. The closed-form dynamic equations can be 
derived systematically in any coordinate system. 

Let be generalized coordinates that completely locate a dynamic system. Let T 
and U be the total kinetic energy and potential energy stored in the dynamic system. We define 
the Lagrangian L by 

nqq ,,1
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)(),(),( iiiii qUqqTqqL −=       (7.2.1)  

Note that the potential energy is a function of generalized coordinates qi and that the kinetic 
energy is that of generalized velocities  as well as generalized coordinates qi. Using the 
Lagrangian, equations of motion of the dynamic system are given by 

iq

 

niQ
q
L

q
L

dt
d

i
ii

,,1, ==
∂
∂

−
∂
∂

     (7.2.2) 

 
where Qi is the generalized force corresponding to the generalized coordinate qi.  Considering the 
virtual work done by non-conservative forces can identify the generalized forces acting on the 
system. 
 
7.2.2 Planar Robot Dynamics 
 Before discussing general robot dynamics in three-dimensional space, we consider the 2 
dof planar robot, for which we have derived the equations of motion based on Newton-Euler 
Formulation. Figure 7.2.1 shows the same robot mechanism with a few new variables needed for 
the Lagrangian Formulation. 
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Figure 7.2.1 Two dof robot 
 
 The total kinetic energy stored in the two links moving at linear velocity and angular 
velocity 

civ

iω at the centroids, as shown in the figure, is given by 
 

∑
=

+=
2

1

22 )
2
1

2
1(

i
iicii ImT ωv        (7.2.3) 

 
where civ  represents the magnitude of the velocity vector. Note that the linear velocities and the 
angular velocities are not independent variables, but are functions of joint angles and joint 
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angular velocities, i.e. the generalized coordinates and the generalized velocities that locate the 
dynamic state of the system uniquely. We need to rewrite the above kinetic energy so that it is 
with respect to . The angular velocities are given by iand θθi

 

21211 , θθωθω +==         (7.2.4) 
 

The linear velocity of the first link is simply 
 

2
1

2
1

2
1 θcc =v          (7.2.5) 

 
However, the centroidal linear velocity of the second link vc2 needs more computation. Treating 
the centroid C2 as an endpoint and applying the formula for computing the endpoint velocity yield 
the centroidal velocity. Let be the 2x2 Jacobian matrix relating the centroidal velocity vector 
to joint velocities. Then, 

2cJ

 
qJJqqJv 22
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where . Substituting eqs.(4~6) to eq.(3) yields ( T
21q θθ= )
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where coefficients Hij are the same as the ones in eq.(7.1.12). 
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2212 θθ HImH cc =++=     (7.1.12-c) 
 
Note that coefficients H11 and H12 are functions of 2θ . 
 The potential energy stored in the two links is given by 
 

)}sin(sin{sin 212112111 θθθθ +++= cc gmgmU    (7.2.8) 
 

 Now we are ready to obtain Lagrange’s equations of motion by differentiating the above 
kinetic energy and potential energy. For the first joint, 
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Substituting the above two equations into eq.(2) yields the same result as eq.(7.1.11-a). The 
equation of motion for the second joint can be obtained in the same manner, which is identical to 
eq.(7.1.11-b). Thus, the same equations of motion have been obtained based on Lagrangian 
Formulation. Note that the Lagrangian Formulation is simpler and more systematic than the 
Newton-Euler Formulation. To formulate kinetic energy, velocities must be obtained, but 
accelerations are not needed. Remember that the acceleration computation was complex in the 
Newton-Euler Formulation, as discussed in the previous section. This acceleration computation is 
automatically dealt with in the computation of Lagrange’s equations of motion. The difference 
between the two methods is more significant when the degrees of freedom increase, since many 
workless constraint forces and moments are present and the acceleration computation becomes 
more complex in Newton-Euler Formulation.  
 
 
 
7.2.3 Inertia Matrix 
 In this section we will extend Lagrange’s equations of motion obtained for the two d.o.f. 
planar robot to the ones for a general n d.o.f. robot. Central to Lagrangian formulation is the 
derivation of the total kinetic energy stored in all of the rigid bodies involved in a robotic system. 
Examining kinetic energy will provide useful physical insights of robot dynamic. Such physical 
insights based on Lagrangian formulation will supplement the ones we have obtained based on 
Newton-Euler formulation. 

As seen in eq.(3) for the planar robot, the kinetic energy stored in an individual arm link 
consists of two terms; one is kinetic energy attributed to the translational motion of mass mi and 
the other is due to rotation about the centroid. For a general three-dimensional rigid body, this can 
be written as 

 

nimT ii
T

ici
T

ciii ,,1,
2
1

2
1

=+= ωIωvv     (7.2.11) 

 
where  and Ii are, respectively, the 3x1 angular velocity vector and the 3x3 inertia matrix of 
the i-th link viewed from the base coordinate frame, i.e. inertial reference. The total kinetic 
energy stored in the whole robot linkage is then given by  

iω

 

∑
=

=
n

i
iTT

1

        (7.2.12) 

 
since energy is additive.  

The expression for the kinetic energy is written in terms of the velocity and angular 
velocity of each link member, which are not independent variables, as mentioned in the previous 
section. Let us now rewrite the above equations in terms of an independent and complete set of 
generalized coordinates, namely joint coordinates q = [q1, .. ,qn]T. For the planar robot example, 
we used the Jacobian matrix relating the centroid velocity to joint velocities for rewriting the 
expression. We can use the same method for rewriting the centroidal velocity and angular 
velocity for three-dimensional multi-body systems. 

 

qJω

qJv
A
ii

L
ici

=

=
        (7.2.13)  
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where JL

i and JA
i  are, respectively, the 3 x n Jacobian matrices relating the centroid linear 

velocity and the angular velocity of the i-th link to joint velocities. Note that the linear and 
angular velocities of the i-th link are dependent only on the first i joint velocities, and hence the 
last n-i columns of these Jacobian matrices are zero vectors. Substituting eq.(13) into eqs.(11) and 
(12) yields 
  

qHqqJIJqqJJq i
TA

i
TA

i
TL

i
TL

i
T

n

i
imT

2
1)(

2
1

1

=+= ∑
=

   (7.2.14) 

where H is a n x n matrix given by 
 

)(
1

A
ii

TA
i

L
i

TL
i

n

i
im JIJJJH += ∑

=

      (7.2.15) 

 
The matrix H incorporates all the mass properties of the whole robot mechanism, as reflected to 
the joint axes, and is referred to as the Multi-Body Inertia Matrix. Note the difference between the 
multi-body inertia matrix and the 3 x 3 inertia matrices of the individual links. The former is an 
aggregate inertia matrix including the latter as components. The multi-body inertia matrix, 
however, has properties similar to those of individual inertia matrices. As shown in eq. (15), the 
multi-body inertia matrix is a symmetric matrix, as is the individual inertia matrix defined by eq. 
(7.1.2). The quadratic form associated with the multi-body inertia matrix represents kinetic 
energy, so does the individual inertia matrix. Kinetic energy is always strictly positive unless the 
system is at rest. The multi-body inertia matrix of eq. (15) is positive definite, as are the 
individual inertia matrices. Note, however, that the multi-body inertia matrix involves Jacobian 
matrices, which vary with linkage configuration. Therefore the multi-body inertia matrix is 
configuration-dependent and represents the instantaneous composite mass properties of the whole 
linkage at the current linkage configuration. To manifest the configuration-dependent nature of 
the multi-body inertia matrix, we write it as H(q), a function of joint coordinates q. 
 Using the components of the multi-body inertia matrix H={Hij}, we can write the total 
kinetic energy in scalar quadratic form: 
 

∑∑
= =

=
n

i

n

j
jiij qqHT

1 12
1

       (7.2.16) 

 
Most of the terms involved in Lagrange’s equations of motion can be obtained directly by 
differentiating the above kinetic energy. From the first term in eq.(2), 
 

∑∑∑
===

+==
∂
∂ n

j
j

ij
n

j
jij

n

j
jij

i

q
dt

dH
qHqH

dt
d

q
T

dt
d

111
)(    (7.2.17) 

 
The first term of the last expression, , comprises the diagonal term  as well as off-

diagonal terms , representing the dynamic interactions among the multiple joints due to 

accelerations, as discussed in the previous section. It is important to note that a pair of joints, i 
and j, have the same coefficient of the dynamic interaction, Hij=Hji , since the multi-body inertia 
matrix H is symmetric. In vector-matrix form these terms can be written collectively as 

∑
=

n

j
jij qH

1
iiiqH

∑
≠

n

ji
jijqH

Department of Mechanical Engineering  Massachusetts Institute of Technology 



Introduction to Robotics, H. Harry Asada 13

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

>
>

=

n

j

i

nnn

ji

ij

n

q

q
q

q

HH
H

H
HH

j
i

1

1

111

qH     (7.2.18) 

 
It is clear that the interactive inertial torque caused by the j-th joint acceleration upon the i-

th joint has the same coefficient as that of caused by joint i upon joint j. This property is 
called Maxwell’s Reciprocity Relation. 

jijqH

ijiqH

 
The second term of eq.(17) is non-zero in general, since the multi-body inertia matrix is 

configuration-dependent, being a function of joint coordinates. Applying the chain rule, 
 

k

n

k k

ijk
n

k k

ijij q
q
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dq

q
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=
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     (7.2.19) 

 
The second term in eq.(2), Lagrange’s equation of motion, also yields the partial derivatives of 
Hij. From eq.(16), 
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   (7.2.20) 

 
Substituting eq.(19) into the second term of eq.(17) and combining the resultant term with 
eq.(20), let us write these nonlinear terms as  
 

∑∑
= =

=
n

j

n

k
kjijki qqCh

1 1
       (7.2.21) 

 
where coefficients Cijk is given by 
 

i

jk

k

ij
ijk q

H
q
H

C
∂

∂
−

∂
∂

=
2
1

       (7.2.22) 

 
This coefficient Cijk is called Christoffel’s Three-Index Symbol. Note that eq.(21) is nonlinear, 
having products of joint velocities. Eq.(21) can be divided into the terms proportional to square 
joint velocities, i.e. j=k, and the ones for kj ≠ : the former represents centrifugal torques and the 
latter Coriolis torques. 
 

(Coriolis)al)(Centrifug
1

2 +=+= ∑∑
≠=

n

jk
kjijk

n

j
jijji qqCqCh   (7.2.23) 
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These centrifugal and Coriolis terms are present only when the multi-body inertia matrix is 
configuration dependent. In other words, the centrifugal and Coriolis torques are interpreted as 
nonlinear effects due to the configuration-dependent nature of the multi-body inertia matrix in 
Lagrangian formulation. 
 
 
 
7.2.4 Generalized Forces 

Forces acting on a system of rigid bodies can be represented as conservative forces and 
non-conservative forces. The former is given by partial derivatives of potential energy U in 
Lagrange’s equations of motion. If gravity is the only conservative force, the total potential 
energy stored in n links is given by 

 

∑
=

−=
n

i
ci

T
imU

1
,0rg        (7.2.24) 

 
where is the position vector of the centroid Ci that is dependent on joint coordinates. 
Substituting this potential energy into Lagrange’s equations of motion yields the following 
gravity torque seen by the i-th joint: 

ci,0r
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1
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1

,0 Jg
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g     (7.2.25) 

 
where is the i-th column vector of the 3 x 1 Jacobian matrix relating the linear centroid 
velocity of the j-th link to joint velocities. 

L
ij ,J

 Non-conservative forces acting on the robot mechanism are represented by generalized 
forces Qi in Lagrangian formulation. Let Workδ  be virtual work done by all the non-conservative 
forces acting on the system. Generalized forces Qi associated with generalized coordinates qi, e.g. 
joint coordinates, are defined by 
 

∑
=

=
n

i
ii qQWork

1
δδ        (7.2.26) 

 
If the virtual work is given by the inner product of joint torques and virtual joint displacements, 

nn qq δτδτ ++11 , the joint torque itself is the generalized force corresponding to the joint 
coordinate. However, generalized forces are often different from joint torques. Care must be 
taken for finding correct generalized forces. Let us work out the following example. 
 
 
 
Example 7.2 
 Consider the same 2 d.o.f. planar robot as Example 7.1. Instead of using joint angles 1θ  
and 2θ  as generalized coordinates, let us use the absolute angles, 1φ and 2φ , measured from the 
positive x-axis. See the figure below. Changing generalized coordinates entails changes to 
generalized forces. Let us find the generalized forces for the new coordinates. 
 

Department of Mechanical Engineering  Massachusetts Institute of Technology 



Introduction to Robotics, H. Harry Asada 15

 

O 

y  

11, τθ  x

22 ,τθ  

2φ  

1φ  1τ  
1δφ  

2δφ  
2τ  

2τ−  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2.2 Absolute joint angles 1φ and 2φ and disjointed links 
 

As shown in the figure, joint torque 2τ  acts on the second link, whose virtual 
displacement is 2δφ , while joint torque 1τ and the reaction torque 2τ− act on the first link for 
virtual displacement 1δφ . Therefore the virtual work is 

 
22121 )( δφτδφττδ +−=Work       (7.2.27) 

 
Comparing this equation with eq.(26) where generalized coordinates are 2211 , qq == φφ , we can 
conclude that the generalized forces are: 
  

22211 , τττ =−= QQ        (7.2.28) 
 

The two sets of generalized coordinates 1θ  and 2θ  vs. 1φ and 2φ  are related as 
 

21211 , θθφθφ +==        (7.2.29) 
 

Substituting eq.(29) into eq.(27) yields 
 

2211212121 )()( δθτδθτθθδτδθττδ +=++−=Work    (7.2.30) 
 

This confirms that the generalized forces associated with the original generalized coordinates, i.e. 
joint coordinates, are 1τ and 2τ . 
 Non-conservative forces acting on a robot mechanism include not only these joint torques 
but also any other external force Fext . If an external force acts at the endpoint, the generalized 
forces Q=(Q1,…, Qn)T associated with generalized coordinates q are, in vector form, given by  
 

qQqFJτpFqτ δδδδδ TT
ext

TT
ext

TWork =+=+= )(      

ext
T FJτQ +=         (7.2.31) 
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When the external force acts at position r, the above Jacobian must be replaced by 
 

q
rJ

d
d

r =         (7.2.32) 

Note that, since generalized coordinates q can uniquely locate the system, the position vector r 
must be written as a function of q alone.  
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