
Issued: September 26, 2005 
Due: Wednesday, October 5, 2005 

2.12 Introduction to Robotics 
Problem Set 2: Robot Programming 

The goal of this problem set and the associated lab sessions on Thursday, September 28th 
and Friday, September 29th, is for you to develop a mobile robot motion planning and control 
algorithm for a simulated demining robot. 

1. First, using matlab, write an algorithm to generate a series of waypoints that will cover a 5 
by 5 meter area, (the “box.txt” environment in simple sim, our demining robot simulator) 
using each of three different strategies: (a) backandforth (“mowing the lawn”) motions, 
(b) spiraling, and (c) random motions. Your program should write the waypoints out to 
a file, in the form of (x, y) coordinates in two columns. Read in the data from the file 
and generate a plot of the waypoints. (Don’t specify waypoints too close to one another; 
a separation for example of at least 0.5 meters is desirable.) 

2. Next, write a C program to generate the waypoint files that you generated using matlab 
in part 1. 

3. Next, run simple sim on an athena linux workstation (we’ll show you how in Lab). First, 
teach yourself to manually steer the robot around a simple environment with four mines. 
Perform two or three runs where you create a data log file for manual control to activate 
all the mines, and load and plot the data to reconstruct the trajectory that you manually 
executed. Details for the data logging format will be provided in lab. Plot both the “true” 
(x, y) trajectory based on the simulated robot state (columns 2 and 3 of the data file), 
and the deadreckoned robot trajectory computed for you by the simulator by integrating 
the encoders on the robot wheels. Compare the two trajectories. Try to do this for two 
different motion control strategies (e.g., conservative vs. agressive velocity control). How 
quickly can you reach all the mines? 

4. As discussed in class, simple sim in with a prebuilt trajectory controller, that can read in a 
set of waypoints and then systematically perform trajectory control to try to reach each of 
the waypoints in turn (assuming no obstacles!). Run simple sim in this mode providing the 
waypoint files that you automatically generated above in part 1 to see how the waypoint 
controller of the simulator performs on your waypoint lists. Does it do a good job? Can 
you think of ways to do better? 

5. Now, add your own C code to the file user_code.cpp to implement your own trajectory 
control algorithm in simple sim. To start, try to simply to integrate your waypoint gen
erator with a simple waypoint controller, and see how it performs. Log data and plot the 
results in matlab. How does your controller compare to the builtin simple sim controller 
tested in part 4, and to the results that you obtained under manual control? 

6. (Optional): Develop a more complex motion controller that would be capable of running in 
a more complex environment with numerous obstacles (such as “maze.txt”) and/or could 
achieve good coverage despite large amounts of deadreckoning error. For example, can you 
implement a finite state machine that switches between the three modes of long transits, 
bouncing off walls, and spiraling motions, that seems to be the mode of operation of the 
roomba robot vacuum cleaner? Does your code outperform a simple controller in a more 
cluttered environment? How fast can you find all the mines? (If you do not feel that you 
have the prior C programming experience to attempt this, then feel free to sketch out a 
potential solution strategy on paper.) 


