We want to solve
I. Equilibrium

$$
\begin{cases}\tau_{i j, j}+f_{i}^{B}=0 & \text { in Volume } \tag{9.1}\\ \tau_{i j} n_{j}=f_{i}^{S_{f}} & \text { on } S_{f}\end{cases}
$$

II. Compatibility
III. Stress-strain law

Use the principle of virtual displacements

$$
\begin{equation*}
\int_{V} \bar{\epsilon}^{T} \boldsymbol{C} \boldsymbol{\epsilon} d V=\mathcal{R} \tag{9.2}
\end{equation*}
$$

We recognize that if $\nu \rightarrow 0.5$

$$
\begin{align*}
\epsilon_{V} & \rightarrow 0 \quad\left(\epsilon_{V}=\epsilon_{x x}+\epsilon_{y y}+\epsilon_{z z}\right) \tag{9.3}\\
\kappa & =\frac{E}{3(1-2 \nu)} \rightarrow \infty \tag{9.4}\\
p & =-\kappa \epsilon_{V} \quad \text { must be accurately computed } \tag{9.5}
\end{align*}
$$

Solution

$$
\begin{equation*}
\tau_{i j}=\kappa \epsilon_{V} \delta_{i j}+2 G \epsilon_{i j}^{\prime} \tag{9.6}
\end{equation*}
$$

where

$$
\delta_{i j}=\text { Kronecker delta }= \begin{cases}1 & i=j \tag{9.7}\\ 0 & i \neq j\end{cases}
$$

Deviatoric strains:

$$
\begin{align*}
& \epsilon_{i j}^{\prime}=\epsilon_{i j}-\frac{\epsilon_{V}}{3} \delta_{i j} \tag{9.8}\\
& \tau_{i j}=-p \delta_{i j}+2 G \epsilon_{i j}^{\prime} \quad\left(p=-\frac{\tau_{k k}}{3}\right) \tag{9.9}
\end{align*}
$$

(9.2) becomes

$$
\begin{align*}
\int_{V} \bar{\epsilon}^{T} \boldsymbol{C}^{\prime} \epsilon^{\prime} d V+\int_{V} \bar{\epsilon}_{V} \kappa \epsilon_{V} d V & =\mathcal{R} \tag{9.10}\\
\int_{V} \bar{\epsilon}^{T} \boldsymbol{C}^{\prime} \epsilon^{\prime} d V-\int_{V} \bar{\epsilon}_{V}^{T} p d V & =\mathcal{R} \tag{9.11}
\end{align*}
$$

We need another equation because we now have another unknown p.

$$
\begin{align*}
p+\kappa \epsilon_{V} & =0 \tag{9.12}\\
\int_{V} \bar{p}\left(p+\kappa \epsilon_{V}\right) d V & =0 \tag{9.13}\\
-\int_{V} \bar{p}\left(\epsilon_{V}+\frac{p}{\kappa}\right) d V & =0 \tag{9.14}
\end{align*}
$$

For an element,

$$
\begin{align*}
\boldsymbol{u} & =\boldsymbol{H} \hat{\boldsymbol{u}} \tag{9.15}\\
\boldsymbol{\epsilon}^{\prime} & =\boldsymbol{B}_{D} \hat{\boldsymbol{u}} \tag{9.16}\\
\epsilon_{V} & =\boldsymbol{B}_{V} \hat{\boldsymbol{u}} \tag{9.17}\\
p & =\boldsymbol{H}_{p} \hat{\boldsymbol{p}} \tag{9.18}
\end{align*}
$$

$$
\begin{align*}
\epsilon_{V} & =\epsilon_{x x}+\epsilon_{y y} \tag{9.19}\\
\boldsymbol{\epsilon}^{\prime} & =\left[\begin{array}{c}
\epsilon_{x x}-\frac{1}{3}\left(\epsilon_{x x}+\epsilon_{y y}\right) \\
\epsilon_{y y}-\frac{1}{3}\left(\epsilon_{x x}+\epsilon_{y y}\right) \\
\gamma_{x y} \\
-\frac{1}{3}\left(\epsilon_{x x}+\epsilon_{y y}\right)
\end{array}\right] \tag{9.20}
\end{align*}
$$

Note: $\epsilon_{z z}=0$ but $\epsilon_{z z}^{\prime} \neq 0$!

$$
\begin{align*}
p & =\boldsymbol{H}_{p} \hat{\boldsymbol{p}}=[1]\left\{p_{0}\right\} \tag{9.21}\\
p(x, y) & =p_{0} \tag{9.22}
\end{align*}
$$

We obtain from (9.11) and (9.14)

$$
\left[\begin{array}{ll}
\boldsymbol{K}_{u u} & \boldsymbol{K}_{u p} \tag{9.23}\\
\boldsymbol{K}_{p u} & \boldsymbol{K}_{p p}
\end{array}\right]\left[\begin{array}{c}
\hat{\boldsymbol{u}} \\
\hat{\boldsymbol{p}}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{R} \\
\mathbf{0}
\end{array}\right]
$$

$\boldsymbol{K}_{u u}=\int_{V} \boldsymbol{B}_{D}^{T} \boldsymbol{C}^{\prime} \boldsymbol{B}_{D} d V$
$\boldsymbol{K}_{u p}=-\int_{V} \boldsymbol{B}_{V}^{T} \boldsymbol{H}_{p} d V$
$\boldsymbol{K}_{p u}=-\int_{V} \boldsymbol{H}_{p}^{T} \boldsymbol{B}_{V} d V$
$\boldsymbol{K}_{p p}=-\int_{V} \boldsymbol{H}_{p}^{T} \frac{1}{\kappa} \boldsymbol{H}_{p} d V$

In practice, we use elements that use pressure interpolations per element, not continuous between elements. For example:

Then, unless $\nu=0.5$ (where $\boldsymbol{K}_{p p}=\mathbf{0}$), we can use static condensation on the pressure dof's.
Use $\hat{\boldsymbol{p}}$ equations to eliminate $\hat{\boldsymbol{p}}$ from the $\hat{\boldsymbol{u}}$ equations.

$$
\begin{equation*}
\left(\boldsymbol{K}_{u u}-\boldsymbol{K}_{u p} \boldsymbol{K}_{p p}^{-1} \boldsymbol{K}_{p u}\right) \hat{\boldsymbol{u}}=\boldsymbol{R} \tag{9.25}
\end{equation*}
$$

(In practice, ν can be 0.499999...)
The "best element" is the $9 / 3$ element. (9 nodes for displacement and 3 pressure dof's).

$$
\begin{equation*}
p(x, y)=p_{0}+p_{1} x+p_{2} y \tag{9.26}
\end{equation*}
$$

The inf-sup condition

$$
\begin{equation*}
\underbrace{\inf }_{q_{h} \in \mathrm{Q}_{h}} \underbrace{\sup }_{v_{h} \in \mathrm{~V}_{h}}[\frac{\int_{\mathrm{Vol}} q_{h} \overbrace{\boldsymbol{\nabla} \cdot \boldsymbol{v}_{h}}^{=\epsilon_{V}} d \mathrm{Vol}}{\underbrace{\left\|q_{h}\right\|\left\|\boldsymbol{v}_{h}\right\|}_{\text {for normalization }}}] \geq \beta>0 \tag{9.27}
\end{equation*}
$$

Q_{h} : pressure space.
If "this" holds, the element is optimal for the displacement assumption used (ellipticity must also be satisfied).

Note:

$$
\begin{aligned}
\text { infimum } & =\text { largest lower bound } \\
\text { supremum } & =\text { least upper bound }
\end{aligned}
$$

For example,

$$
\begin{aligned}
\inf \{1,2,4\} & =1 \\
\sup \{1,2,4\} & =4 \\
\inf \{x \in R ; \quad 0<x<2\} & =0 \\
\sup \{x \in R ; \quad 0<x<2\} & =2
\end{aligned}
$$

(9.23) rewritten ($\kappa=\infty$, full incompressibility). Diagonalize using eigenvalues/eigenvectors.

For a mesh of element size h we want $\beta_{h}>0$ as we refine the mesh, $h \rightarrow 0$

For ${ }^{\times \times \times} \times$(entry [3,1] in matrix) assume the circled entry is the minimum (inf) of \times_{x}^{x}.
Also, all entries in the matrix not shown are zero.

Case $1 \beta_{h}=0$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{rr}
\left.0 \cdot u_{h}\right|_{i}=0 & \text { (from the bottom equation) } \\
\left.\underbrace{\alpha}_{\neq 0} \cdot u_{h}\right|_{i}+\left.0 \cdot p_{h}\right|_{j}=\left.R_{h}\right|_{i} & \text { (from the top equation) }
\end{array}\right. \\
& \Rightarrow \text { no equation for }\left.p_{h}\right|_{j} \\
& \Rightarrow \text { spurious pressure! (any pressure satisfies equation) }
\end{aligned}
$$

Case $2 \beta_{h}=\operatorname{small}=\epsilon$

$$
\begin{aligned}
\left.\epsilon \cdot u_{h}\right|_{i} & =\left.0 \Rightarrow u_{h}\right|_{i}=0 \\
\left.\therefore \epsilon \cdot \quad p_{h}\right|_{j}+\left.u_{h}\right|_{i} \cdot \alpha & =\left.R_{h}\right|_{i} \\
\left.\Rightarrow p_{h}\right|_{j} & =\frac{\left.R_{h}\right|_{i}}{\epsilon} \Rightarrow\left(\begin{array}{rl}
\text { displ. } & =0 \\
\text { pressure } & \rightarrow \text { large }
\end{array}\right) \text { as } \epsilon \text { is small }
\end{aligned}
$$

The behavior of given mesh when bulk modulus increases: locking, large pressures. See Example 4.39 textbook.

MIT OpenCourseWare
http://ocw.mit.edu

2.094 Finite Element Analysis of Solids and Fluids II

 Spring 2011For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

