2.094 - Finite Element Analysis of Solids and Fluids

Fall '08
Lecture 4 - Finite element formulation for solids and structures
Prof. K.J. Bathe
MIT OpenCourseWare

We considered a general 3D body,

The exact solution of the mathematical model must satisfy the conditions:

- Equilibrium within ${ }^{t} V$ and on ${ }^{t} S_{f}$,
- Compatibility
- Stress-strain law(s)
I. Differential formulation
II. Variational formulation (Principle of virtual displacements) (or weak formulation)

We developed the governing F.E. equations for a sheet or bar

We obtained

$$
\begin{equation*}
{ }^{t} \boldsymbol{F}={ }^{t} \boldsymbol{R} \tag{4.1}
\end{equation*}
$$

where ${ }^{t} \boldsymbol{F}$ is a function of displacements/stresses/material law; and ${ }^{t} \boldsymbol{R}$ is a function of time.
Assume for now linear analysis: Equilibrium within ${ }^{0} \mathrm{~V}$ and on ${ }^{0} S_{f}$, linear stress-strain law and small displacements yields

$$
\begin{equation*}
{ }^{t} \boldsymbol{F}=\boldsymbol{K} \cdot{ }^{t} \boldsymbol{U} \tag{4.2}
\end{equation*}
$$

We want to establish,

$$
\begin{equation*}
\boldsymbol{K} \boldsymbol{U}(t)=\boldsymbol{R}(t) \tag{4.3}
\end{equation*}
$$

Consider

$$
\hat{\boldsymbol{U}}^{T}=\left[\begin{array}{llllll}
U_{1} & V_{1} & W_{1} & U_{2} & \cdots & W_{N} \tag{4.4}
\end{array}\right] \quad(N \text { nodes })
$$

where $\hat{\boldsymbol{U}}^{T}$ is a distinct nodal point displacement vector.
Note: for the moment "remove S_{u} "
We also say

$$
\hat{\boldsymbol{U}}^{T}=\left[\begin{array}{lllll}
U_{1} & U_{2} & U_{3} & \cdots & U_{n} \tag{4.5}
\end{array}\right] \quad(n=3 N)
$$

We now assume

$$
\boldsymbol{u}^{(m)}=\boldsymbol{H}^{(m)} \hat{\boldsymbol{U}}, \quad \boldsymbol{u}^{(\boldsymbol{m})}=\left[\begin{array}{c}
u \tag{4.6a}\\
v \\
w
\end{array}\right]^{(m)}
$$

where $\boldsymbol{H}^{(\boldsymbol{m})}$ is $3 \times n$ and $\hat{\boldsymbol{U}}$ is $n \mathrm{x} 1$.

$$
\begin{equation*}
\epsilon^{(m)}=B^{(m)} \hat{U} \tag{4.6b}
\end{equation*}
$$

where $\boldsymbol{B}^{(\boldsymbol{m})}$ is $6 \times n$, and

$$
\begin{aligned}
\boldsymbol{\epsilon}^{(m)^{T}} & =\left[\begin{array}{llllll}
\epsilon_{x x} & \epsilon_{y y} & \epsilon_{z z} & \gamma_{x y} & \gamma_{y z} & \gamma_{z x}
\end{array}\right] \\
\text { e.g. } \gamma_{x y} & =\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}
\end{aligned}
$$

We also assume

$$
\begin{align*}
\overline{\boldsymbol{u}}^{(m)} & =\boldsymbol{H}^{(m)} \overline{\hat{\boldsymbol{U}}} \tag{4.6c}\\
\overline{\boldsymbol{\epsilon}}^{(m)} & =\boldsymbol{B}^{(m)} \overline{\hat{\boldsymbol{U}}} \tag{4.6d}
\end{align*}
$$

Principle of Virtual Work:

$$
\begin{equation*}
\int_{V} \overline{\boldsymbol{\epsilon}}^{T} \boldsymbol{\tau} d V=\int_{V} \overline{\hat{\boldsymbol{U}}}^{T} \boldsymbol{f}^{B} d V \tag{4.7}
\end{equation*}
$$

(4.7) can be rewritten as

$$
\begin{equation*}
\sum_{m} \int_{V^{(m)}} \overline{\boldsymbol{\epsilon}}^{(m)^{T}} \boldsymbol{\tau}^{(m)} d V^{(m)}=\sum_{m} \int_{V^{(m)}} \overline{\hat{\boldsymbol{U}}}^{(m)^{T}} \boldsymbol{f}^{B^{(m)}} d V^{(m)} \tag{4.8}
\end{equation*}
$$

Substitute (4.6a) to (4.6d).

$$
\begin{align*}
& \overline{\hat{\boldsymbol{U}}}^{T}\left\{\sum_{m} \int_{V^{(m)}} \boldsymbol{B}^{(m)^{T}} \boldsymbol{\tau}^{(m)} d V^{(m)}\right\}= \tag{4.9}\\
& \overline{\hat{\boldsymbol{U}}}^{T}\left\{\sum_{m} \int_{V^{(m)}} \boldsymbol{H}^{(m)^{T}} \boldsymbol{f}^{B^{(m)}} d V^{(m)}\right\} \\
& \boldsymbol{\tau}^{(m)}=\boldsymbol{C}^{(m)} \boldsymbol{\epsilon}^{(m)}=\boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} \hat{\boldsymbol{U}} \tag{4.10}
\end{align*}
$$

Finally,

$$
\begin{gather*}
\overline{\hat{\boldsymbol{V}}}^{\prime \prime}\left\{\sum_{m} \int_{V^{(m)}} \boldsymbol{B}^{(m)^{T}} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} d V^{(m)}\right\} \hat{\boldsymbol{U}}= \tag{4.11}\\
\overline{\hat{\boldsymbol{V}}}^{\grave{\prime}}\left\{\sum_{m} \int_{V^{(m)}} \boldsymbol{H}^{(m)^{T}} \boldsymbol{f}^{B^{(m)}} d V^{(m)}\right\}
\end{gather*}
$$

with

$$
\begin{equation*}
\overline{\boldsymbol{\epsilon}}^{(m)^{T}}=\overline{\hat{\boldsymbol{U}}}^{T} \boldsymbol{B}^{(m)^{T}} \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{K} \hat{\boldsymbol{U}}=\boldsymbol{R}_{B} \tag{4.13}
\end{equation*}
$$

where \boldsymbol{K} is $n \times n$, and \boldsymbol{R}_{B} is $n \times 1$.
Direct stiffness method:

$$
\begin{align*}
\boldsymbol{K} & =\sum_{m} \boldsymbol{K}^{(m)} \tag{4.14}\\
\boldsymbol{R}_{B} & =\sum_{m} \boldsymbol{R}_{B}^{(m)} \tag{4.15}\\
\boldsymbol{K}^{(m)} & =\int_{V^{(m)}} \boldsymbol{B}^{(m)^{T}} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} d V^{(m)} \tag{4.16}\\
\boldsymbol{R}_{B}^{(m)} & =\int_{V^{(m)}} \boldsymbol{H}^{(m)^{T}} \boldsymbol{f}^{B^{(m)}} d V^{(m)} \tag{4.17}
\end{align*}
$$

Example 4.5 textbook

$E=$ Young's Modulus

Mathematical model Plane sections remain plane:

F.E. model

$$
\boldsymbol{U}=\left[\begin{array}{l}
U_{1} \tag{4.18}\\
U_{2} \\
U_{3}
\end{array}\right]
$$

Element 1
el. (1)

$$
u^{(1)}(x)=\underbrace{\left[\begin{array}{ccc}
1-\frac{x}{100} & \frac{x}{100} & 0
\end{array}\right]}_{\boldsymbol{H}^{(1)}}\left[\begin{array}{c}
U_{1} \tag{4.19}\\
U_{2} \\
U_{3}
\end{array}\right]
$$

$$
\epsilon_{x x}^{(1)}(x)=\underbrace{\left[\begin{array}{ccc}
-\frac{1}{100} & \frac{1}{100} & 0
\end{array}\right]}_{B^{(1)}}\left[\begin{array}{c}
U_{1} \tag{4.20}\\
U_{2} \\
U_{3}
\end{array}\right]
$$

Element 2

$$
\begin{align*}
& u^{(2)}(x)=\underbrace{\left[\begin{array}{lll}
0 & 1-\frac{x}{80} & \frac{x}{80}
\end{array}\right]}_{\boldsymbol{H}^{(2)}} \boldsymbol{U} \tag{4.21}\\
& \epsilon_{x x}^{(2)}(x)=\underbrace{\left[\begin{array}{ccc}
0 & -\frac{1}{80} & \frac{1}{80}
\end{array}\right]}_{\boldsymbol{B}^{(2)}} \boldsymbol{U} \tag{4.22}
\end{align*}
$$

Then,

$$
\boldsymbol{K}=\frac{E}{100}\left[\begin{array}{ccc}
1 & -1 & 0 \tag{4.23}\\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{13 E}{240}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

where,

$$
\begin{align*}
\frac{E(1)}{100} & \equiv\left(\frac{A E}{L}\right) \tag{4.24}\\
\frac{E \cdot 13}{3 \cdot 80} & =\underbrace{\left(\frac{13}{3}\right)}_{A^{*}} \frac{E}{80} \tag{4.25}\\
\left.A\right|_{\eta=0}<A^{*} & <\left.A\right|_{\eta=80} \tag{4.26}\\
1<4.333 & <9
\end{align*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.094 Finite Element Analysis of Solids and Fluids II

 Spring 2011For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

