2.094— Finite Element Analysis of Solids and Fluids

— Fall '08 — MIT OpenCourseWare

Contents

1	Large displacement analysis of solids/structures					
	1.1	Projec	t Example	3		
	1.2	Large	Displacement analysis	4		
		1.2.1	$Mathematical \ model/problem \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	4		
		1.2.2	Requirements to be fulfilled by solution at time t	5		
		1.2.3	Finite Element Method	5		
		1.2.4	Notation	6		
2	Fin	ite eleı	nent formulation of solids and structures	7		
	2.1	Princi	ple of Virtual Work	8		
	2.2	Exam	ple	8		
3	Fin	ite eleı	nent formulation for solids and structures	10		
4	Fin	ite eleı	nent formulation for solids and structures	14		
5	F.E	. displ	acement formulation, cont'd	19		
6	Finite element formulation, example, convergence					
	6.1	Exam	ple	23		
		6.1.1	F.E. model	23		
		6.1.2	Higher-order elements	25		
7	Isop	parame	etric elements	28		
8	Convergence of displacement-based FEM					
9	u/p	formu	lation	37		
10	F.E	. large	deformation/general nonlinear analysis	41		
11 Deformation, strain and stress tensors						
12	Tot	al Lag	rangian formulation	49		

13 Total Lagrangian formulation, cont'd							
14	Total Lagrangian formulation, cont'd	57					
15 Field problems							
	15.1 Heat transfer	61					
	15.1.1 Differential formulation	61					
	15.1.2 Principle of virtual temperatures	62					
	15.2 Inviscid, incompressible, irrotational flow	64					
16	F.E. analysis of Navier-Stokes fluids	65					
17	Incompressible fluid flow and heat transfer, cont'd	71					
	17.1 Abstract body	71					
	17.2 Actual 2D problem (channel flow)	71					
	17.3 Basic equations	72					
	17.4 Model problem	72					
	17.5 FSI briefly	75					
18	Solution of F.E. equations	76					
	18.1 Slender structures	79					
19	Slender structures	81					
20	20 Beams, plates, and shells						
21	Plates and shells	90					

 2.094 — Finite Element Analysis of Solids and Fluids
 Fall '08

 Lecture 1 - Large displacement analysis of solids/structures
 MIT OpenCourseWare

 Prof. K.J. Bathe
 MIT OpenCourseWare

1.1 Project Example

Physical problem

"Simple" mathematical model

- analytical solution
- F.E. solution(s)

More complex mathematical model

- holes included
- large disp./large strains
- F.E. solution(s) \Rightarrow
- How many finite elements?

We need a good error measure (especially for FSI)

"Even more complex" mathematical model

The "complex mathematical model" includes Fluid Structure Interaction (FSI).

You will use ADINA in your projects (and homework) for structures and fluid flow.

Reading: Ch. 1 in the text

Reading: Ch. 6

1.2 Large Displacement analysis

Lagrangian formulations:

- Total Lagrangian formulation
- Updated Lagrangian formulation

1.2.1 Mathematical model/problem

Given the original configuration of the body, the support conditions, the applied external loads, the assumed stress-strain law Calculate the deformations, strains, stresses of the body.

Question Is there a unique solution? Yes, for infinitesimal small displacement/strain. Not necessarily for large displacement/strain.

For example:

Snap-through problem

The same load. Two different deformed configurations.

Column problem, statics

Not physical

 tR is in "direction" of bending moment \Rightarrow Not in equilibrium.

1.2.2 Requirements to be fulfilled by solution at time t

- I. Equilibrium of stresses (Cauchy stresses, forces per unit area in ${}^{t}V$ and on ${}^{t}S_{f}$) with the applied body forces ${}^{t}\boldsymbol{f}^{B}$ and surface tractions ${}^{t}\boldsymbol{f}^{S_{f}}$
- II. Compatibility
- III. Stress-strain law

1.2.3 Finite Element Method

- I. Equilibrium condition means now
 - equilibrium at the nodes of the mesh
 - equilibrium of each finite element
- II. Compatibility satisfied exactly
- III. Stress-strain law satisfied exactly

1.2.4 Notation

Cauchy stresses (force per unit area at time t):

$${}^{t}\tau_{ij} \quad i, j = 1, 2, 3 \quad {}^{t}\tau_{ij} = {}^{t}\tau_{ji} \tag{1.1}$$

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 2 - Finite element formulation of solids and structures Prof. K.J. Bathe MIT OpenCourseWare

Assume that on ${}^{t}S_{u}$ the displacements are zero (and ${}^{t}S_{u}$ is constant). Need to satisfy at time t: 6

Reading: Ch. 1, Sec. 6.1-6.2

• Equilibrium of Cauchy stresses ${}^t\tau_{ij}$ with applied loads

$${}^{t}\tau^{T} = \begin{bmatrix} {}^{t}\tau_{11} & {}^{t}\tau_{22} & {}^{t}\tau_{33} & {}^{t}\tau_{12} & {}^{t}\tau_{23} & {}^{t}\tau_{31} \end{bmatrix}$$
(2.1)

(For
$$i = 1, 2, 3$$
)

$${}^{t}\tau_{ij,j} + {}^{t}f_{i}^{B} = 0 \text{ in } {}^{t}V \text{ (sum over } j\text{)}$$

$$(2.2)$$

$${}^{t}\tau_{ij}{}^{t}n_{j} = {}^{t}f_{i}^{S_{f}} \text{ on } {}^{t}S_{f} \text{ (sum over } j)$$

$$(2.3)$$

$$(e.g. {}^{t}f_{i}^{S_{f}} = {}^{t}\tau_{i1} {}^{t}n_{1} + {}^{t}\tau_{i2} {}^{t}n_{2} + {}^{t}\tau_{i3} {}^{t}n_{3})$$

$$(2.4)$$

And: ${}^{t}\tau_{11} {}^{t}n_1 + {}^{t}\tau_{12} {}^{t}n_2 = {}^{t}f_1^{S_f}$

- Compatibility The displacements ${}^{t}u_{i}$ need to be continuous and zero on ${}^{t}S_{u}$.
- $\bullet \ Stress-Strain \ law$

$${}^{t}\tau_{ij} = \operatorname{function}\left({}^{t}u_{j}\right) \tag{2.5}$$

2.1 Principle of Virtual Work*

$$\int_{^{t}V} {^{t}\tau_{ij}} {_{t}\overline{e}_{ij}} d^{t}V = \int_{^{t}V} {^{t}f_i^B} \overline{u}_i d^{t}V + \int_{^{t}S_f} {^{t}f_i^S} \overline{u}_i^{S_f} d^{t}S_f$$
(2.6)

where

$${}_{t}\overline{e}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_{i}}{\partial {}^{t}x_{j}} + \frac{\partial \overline{u}_{j}}{\partial {}^{t}x_{i}} \right)$$

$$(2.7)$$

with
$$\overline{u}_i\Big|_{{}^tS_u} = 0$$
 (2.8)

2.2 Example

Assume "plane sections remain plane"

Principle of Virtual Work

$$\int_{t_V} {}^t \tau_{11\ t} \overline{e}_{11} \ d\ {}^t V = \int_{t_V} {}^t f_1^B \ \overline{u}_1 \ d\ {}^t V + \int_{t_{S_f}} {}^t P_r \ \overline{u}_1^{S_f} \ d\ {}^t S_f$$
(2.9)

Derivation of (2.9)

$${}^{t}\tau_{11,1} + {}^{t}f_{1}^{B} = 0 \quad \text{by (2.2)}$$
(2.10)

$$\begin{pmatrix} t \tau_{11,1} + t f_1^B \end{pmatrix} \overline{u}_1 = 0$$
 (2.11)

^{*}or Principle of Virtual Displacements

Hence,

$$\int_{t_V} \left({}^t \tau_{11,1} + {}^t f_1^B \right) \overline{u}_1 \, d \, {}^t V = 0 \tag{2.12}$$

$$\underbrace{t_{\tau_{11}\overline{u}_{1}}}_{\overline{u}_{1}^{S_{f}}t_{\tau_{11}}^{t}S_{f}} - \int_{t_{V}}\underbrace{\overline{u}_{1,1}}_{t^{\overline{e}_{11}}} t_{\tau_{11}} d^{t}V + \int_{t_{V}}\overline{u}_{1} t_{1}^{T} d^{t}V = 0$$

$$(2.13)$$

where ${}^{t}\tau_{11}|_{{}^{t}S_{f}} = {}^{t}P_{r}.$

Therefore we have

$$\int_{t_V} {}_t \overline{e}_{11} {}^t \tau_{11} d {}^t V = \int_{t_V} \overline{u}_1 {}^t f_1^B d {}^t V + \overline{u}_1^{S_f} {}^t P_r {}^t S_f$$
(2.14)

From (2.12) to (2.14) we simply used mathematics. Hence, if (2.2) and (2.3) are satisfied, then (2.14) must hold. If (2.14) holds, then also (2.2) and (2.3) hold!

Namely, from (2.14)

$$\int_{tV} \overline{u}_{1,1}{}^t \tau_{11} d^t V = \overline{u}_1{}^t \tau_{11} \Big|_{tS_u}^{tS_f} - \int_{tV} \overline{u}_1{}^t \tau_{11,1} d^t V = \int_{tV} \overline{u}_1{}^t f_1^B d^t V + \overline{u}_1^{S_f t} P_r{}^t S_f$$
(2.15)

 or

$$\int_{t_V} \overline{u}_1 \left({}^t \tau_{11,1} + {}^t f_1^B \right) d^t V + \overline{u}_1^{S_f} \left({}^t P_r - {}^t \tau_{11} \right) {}^t S_f = 0$$
(2.16)

Now let $\overline{u}_1 = x \left(1 - \frac{x}{tL}\right) \left({}^t \tau_{11,1} + {}^t f_1^B\right)$, where ${}^t L = \text{length of bar.}$ Hence we must have from (2.16)

 ${}^{t}\tau_{11,1} + {}^{t}f_{1}^{B} = 0 \tag{2.17}$

and then also

$${}^{t}P_{r} = {}^{t}\tau_{11} \tag{2.18}$$

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 3 - Finite element formulation for solids and structures Prof. K.J. Bathe MIT OpenCourseWare

We need to satisfy at time t:

 $\bullet \ Equilibrium$

$$\frac{\partial^{t} \tau_{ij}}{\partial^{t} x_{j}} + {}^{t} f_{i}^{B} = 0 \quad (i = 1, 2, 3) \text{ in } {}^{t} V$$

$${}^{t} \tau_{ij} {}^{t} n_{j} = {}^{t} f_{i}^{S_{f}} \quad (i = 1, 2, 3) \text{ on } {}^{t} S_{f}$$
(3.1)
(3.2)

• Stress-strain law(s)

Principle of virtual displacements

$$\int_{t_V} {}^t \tau_{ijt} \overline{e}_{ij} d^t V = \int_{t_V} \overline{u}_i {}^t f_i^B d^t V + \int_{t_{S_f}} \overline{u}_i |_{t_{S_f}} {}^t f_i^{S_f} d^t S_f$$
(3.3)

$$_{t}\overline{e}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_{i}}{\partial {}^{t}x_{j}} + \frac{\partial \overline{u}_{j}}{\partial {}^{t}x_{i}} \right)$$
(3.4)

- If (3.3) holds for any continuous virtual displacement (zero on ${}^{t}S_{u}$), then (3.1) and (3.2) hold and vice versa.
- Refer to Ex. 4.2 in the textbook.

Reading: Sec. 6.1-6.2

Major steps

I. Take (3.1) and weigh with \overline{u}_i :

$$\left({}^{t}\tau_{ij,j} + {}^{t}f_{i}^{B} \right)\overline{u}_{i} = 0.$$

$$(3.5a)$$

II. Integrate (3.5a) over volume ${}^{t}V$:

$$\int_{^{t}V} \left({}^{t}\tau_{ij,j} + {}^{t}f_{i}^{B} \right) \overline{u}_{i} d {}^{t}V = 0$$

$$(3.5b)$$

- III. Use divergence theorem. Obtain a boundary term of stresses times virtual displacements on ${}^{t}S = {}^{t}S_{u} \cup {}^{t}S_{f}$.
- IV. But, on ${}^{t}S_{u}$ the $\overline{u}_{i} = 0$ and on ${}^{t}S_{f}$ we have (3.2) to satisfy.

Result: (3.3).

Example

$$\int_{tV} {}^t \tau_{11t} \overline{e}_{11} d^t V = \int_{{}^tS_f} \overline{u}_i {}^t f_1^{S_f} d^t S_f$$

One element solution:

(3.6)

$$u(r) = \frac{1}{2} (1+r) u_1 + \frac{1}{2} (1-r) u_2$$
(3.7)

$${}^{t}u(r) = \frac{1}{2} (1+r) {}^{t}u_1 + \frac{1}{2} (1-r) {}^{t}u_2$$
(3.8)

$$\overline{u}(r) = \frac{1}{2} (1+r) \overline{u}_1 + \frac{1}{2} (1-r) \overline{u}_2$$
(3.9)

Suppose we know ${}^{t}\tau_{11}, {}^{t}V, {}^{t}S_{f}, {}^{t}u \dots$ use (3.6).

For element 1,

$${}_{t}\overline{e}_{11} = \frac{\partial \overline{u}}{\partial {}^{t}x} = \boldsymbol{B}^{(1)} \left(\begin{array}{c} \overline{u}_{1} \\ \overline{u}_{2} \end{array}\right)$$
(3.10)

$$\int_{t_V} t \overline{e_{11t}^T} \tau_{11} d^t V \xrightarrow{\text{for el. (1)}} [\overline{u}_1 \quad \overline{u}_2] \underbrace{\int_{t_V} \boldsymbol{B}^{(1)^T \ t} \tau_{11} \ d^t V}_{= t \boldsymbol{F}^{(1)}}$$
(3.11)

$$\xrightarrow{\text{for el. (1)}} [\overline{u}_1 \quad \overline{u}_2] \ {}^t \boldsymbol{F}^{(1)} \tag{3.12}$$

$$= \begin{bmatrix} \overline{U}_1 & \overline{U}_2 & \overline{U}_3 \\ \overline{u}_2 & \overline{u}_1 & \end{bmatrix} \begin{bmatrix} {}^t \hat{F}^{(1)} \\ 0 \end{bmatrix}$$
(3.13)

where

$${}^{t}\hat{F}_{1}^{(1)} = {}^{t}F_{2}^{(1)}$$

$${}^{t}\hat{F}_{2}^{(1)} = {}^{t}F_{1}^{(1)}$$

$$(3.14)$$

$$(3.15)$$

For element 2, similarly,

$$= \begin{bmatrix} \overline{U}_1 & \overline{U}_2 & \overline{U}_3 \\ \overline{u}_2 & \overline{u}_1 \end{bmatrix} \begin{bmatrix} 0 \\ {}^t \hat{F}^{(2)} \end{bmatrix}$$
(3.16)

R.H.S.

$$\underbrace{\left[\begin{array}{ccc}\overline{U}_{1} & \overline{U}_{2} & \overline{U}_{3}\end{array}\right]}_{\overline{U}^{T}} \begin{bmatrix} (\text{unknown reaction at left}) \\ 0 \\ {}^{t}S_{f} \cdot {}^{t}f_{1}^{S_{f}} \end{bmatrix}$$
(3.17)

Now apply,

 $\overline{\boldsymbol{U}}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ (3.18)

then,

$$\overline{\boldsymbol{U}}^T = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$
(3.19)

then,

$$\overline{\boldsymbol{U}}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
(3.20)

This gives,

$$\begin{bmatrix} {}^{t}\hat{F}^{(1)} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ {}^{t}\hat{F}^{(2)} \end{bmatrix} = \begin{bmatrix} \text{unknown reaction} \\ 0 \\ {}^{t}f_{1}^{{}^{t}S_{f}} \cdot {}^{t}S_{f} \end{bmatrix}$$
(3.21)

We write that as

$${}^{t}\boldsymbol{F} = {}^{t}\boldsymbol{R}$$

$${}^{t}\boldsymbol{F} = \operatorname{fn}\left({}^{t}U_{1}, {}^{t}U_{2}, {}^{t}U_{3}\right)$$

$$(3.22)$$

$$(3.23)$$

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 4 - Finite element formulation for solids and structures Prof. K.J. Bathe MIT OpenCourseWare

We considered a general 3D body,

Reading: Ch. 4

The exact solution of the mathematical model must satisfy the conditions:

- Equilibrium within ${}^{t}V$ and on ${}^{t}S_{f}$,
- Compatibility
- Stress-strain law(s)
- I. Differential formulation

II. Variational formulation (Principle of virtual displacements) (or weak formulation)

We developed the governing F.E. equations for a sheet or bar

We obtained

$${}^{t}\boldsymbol{F} = {}^{t}\boldsymbol{R}$$

$$(4.1)$$

where ${}^{t}F$ is a function of displacements/stresses/material law; and ${}^{t}R$ is a function of time.

Assume for now linear analysis: Equilibrium within 0V and on 0S_f , linear stress-strain law and small displacements yields

$${}^{t}\boldsymbol{F} = \boldsymbol{K} \cdot {}^{t}\boldsymbol{U} \tag{4.2}$$

We want to establish,

$$\boldsymbol{K}\boldsymbol{U}(t) = \boldsymbol{R}(t) \tag{4.3}$$

Consider

$$\hat{\boldsymbol{U}}^T = \begin{bmatrix} U_1 & V_1 & W_1 & U_2 & \cdots & W_N \end{bmatrix} \quad (N \text{ nodes})$$

$$(4.4)$$

where \hat{U}^T is a distinct nodal point displacement vector.

Note: for the moment "remove S_u "

We also say

$$\hat{\boldsymbol{U}}^T = \begin{bmatrix} U_1 & U_2 & U_3 & \cdots & U_n \end{bmatrix} \quad (n = 3N)$$

$$\tag{4.5}$$

We now assume

$$\boldsymbol{u^{(m)}} = \boldsymbol{H^{(m)}}\hat{\boldsymbol{U}}, \quad \boldsymbol{u^{(m)}} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}^{(m)}$$
(4.6a)

where $\boldsymbol{H^{(m)}}$ is 3 x n and $\hat{\boldsymbol{U}}$ is n x 1.

$$\boldsymbol{\epsilon}^{(m)} = \boldsymbol{B}^{(m)} \hat{\boldsymbol{U}} \tag{4.6b}$$

where $\boldsymbol{B^{(m)}}$ is 6 x n, and

$$\boldsymbol{\epsilon}^{(m)T} = \begin{bmatrix} \epsilon_{xx} & \epsilon_{yy} & \epsilon_{zz} & \gamma_{xy} & \gamma_{yz} & \gamma_{zx} \end{bmatrix}$$

e.g. $\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$

We also assume

$$\overline{\boldsymbol{u}}^{(m)} = \boldsymbol{H}^{(m)} \overline{\hat{\boldsymbol{U}}}$$

$$\overline{\boldsymbol{z}}^{(m)} = \boldsymbol{P}^{(m)} \overline{\hat{\boldsymbol{U}}}$$

$$(4.6c)$$

$$(4.6d)$$

$$\overline{\boldsymbol{\epsilon}}^{(m)} = \boldsymbol{B}^{(m)}\boldsymbol{U} \tag{4.6d}$$

Principle of Virtual Work:

$$\int_{V} \bar{\boldsymbol{\epsilon}}^{T} \boldsymbol{\tau} dV = \int_{V} \overline{\hat{\boldsymbol{U}}}^{T} \boldsymbol{f}^{B} dV$$
(4.7)

(4.7) can be rewritten as

$$\sum_{m} \int_{V^{(m)}} \overline{\boldsymbol{\epsilon}}^{(m)T} \boldsymbol{\tau}^{(m)} dV^{(m)} = \sum_{m} \int_{V^{(m)}} \overline{\hat{\boldsymbol{U}}}^{(m)T} \boldsymbol{f}^{B^{(m)}} dV^{(m)}$$
(4.8)

Substitute (4.6a) to (4.6d).

$$\overline{\widehat{\boldsymbol{U}}}^{T} \left\{ \sum_{m} \int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{\tau}^{(m)} dV^{(m)} \right\} = \overline{\widehat{\boldsymbol{U}}}^{T} \left\{ \sum_{m} \int_{V^{(m)}} \boldsymbol{H}^{(m)T} \boldsymbol{f}^{B^{(m)}} dV^{(m)} \right\}$$
(4.9)

$$\boldsymbol{\tau}^{(m)} = \boldsymbol{C}^{(m)} \boldsymbol{\epsilon}^{(m)} = \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} \hat{\boldsymbol{U}}$$
(4.10)

Finally,

$$\overline{\not{\mathcal{V}}}^{\mathcal{T}} \left\{ \sum_{m} \int_{V^{(m)}} \mathbf{B}^{(m)T} \mathbf{C}^{(m)} \mathbf{B}^{(m)} dV^{(m)} \right\} \hat{\mathbf{U}} = \overline{\not{\mathcal{V}}}^{\mathcal{T}} \left\{ \sum_{m} \int_{V^{(m)}} \mathbf{H}^{(m)T} \mathbf{f}^{B^{(m)}} dV^{(m)} \right\}$$
(4.11)

with

$$\overline{\boldsymbol{\epsilon}}^{(m)T} = \overline{\widehat{\boldsymbol{U}}}^T \boldsymbol{B}^{(m)T}$$
(4.12)

$$K\hat{U} = R_B \tag{4.13}$$

where \boldsymbol{K} is $n \ge n$, and \boldsymbol{R}_B is $n \ge 1$.

Direct stiffness method:

 $\boldsymbol{K} = \sum_{m} \boldsymbol{K}^{(m)} \tag{4.14}$

$$\boldsymbol{R}_B = \sum_m \boldsymbol{R}_B^{(m)} \tag{4.15}$$

$$\boldsymbol{K}^{(m)} = \int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} \, dV^{(m)}$$
(4.16)

$$\boldsymbol{R}_{B}^{(m)} = \int_{V^{(m)}} \boldsymbol{H}^{(m)T} \boldsymbol{f}^{B^{(m)}} \, dV^{(m)}$$
(4.17)

Example 4.5 textbook

E = Young's Modulus

Mathematical model Plane sections remain plane:

F.E. model

Element 1

$$u^{(1)}(x) = \underbrace{\left[\begin{array}{ccc} 1 - \frac{x}{100} & \frac{x}{100} & 0 \end{array}\right]}_{H^{(1)}} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix}$$
(4.19)

$$\epsilon_{xx}^{(1)}(x) = \underbrace{\left[\begin{array}{cc} -\frac{1}{100} & \frac{1}{100} & 0 \end{array}\right]}_{B^{(1)}} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix}$$
(4.20)

Element 2

$$u^{(2)}(x) = \underbrace{\left[\begin{array}{ccc} 0 & 1 - \frac{x}{80} & \frac{x}{80} \end{array}\right]}_{H^{(2)}} U \tag{4.21}$$

$$\epsilon_{xx}^{(2)}(x) = \underbrace{\left[\begin{array}{cc} 0 & -\frac{1}{80} & \frac{1}{80} \end{array}\right]}_{B^{(2)}} U \tag{4.22}$$

Then,

$$\boldsymbol{K} = \frac{E}{100} \begin{bmatrix} 1 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} + \frac{13E}{240} \begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & -1\\ 0 & -1 & 1 \end{bmatrix}$$
(4.23)

where,

$$\frac{E(1)}{100} \equiv \left(\frac{AE}{L}\right) \tag{4.24}$$

$$\frac{E \cdot 13}{3 \cdot 80} = \underbrace{\left(\frac{13}{3}\right)}_{A^*} \frac{E}{80}$$
(4.25)

094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 5 - F.E. displacement formulation, cont'd		
Lecture 5 - F.E. displacement for	mulation, cont'd	
Prof. K.J. Bathe	MIT OpenCourseWare	

Reading: Ch. 4

For the continuum

- Differential formulation
- Variational formulation (Principle of Virtual Displacements)

Next, we assumed infinitesimal small displacement, Hooke's Law, linear analysis

$$KU = R \tag{5.1a}$$

$$\boxed{\boldsymbol{u}^{(m)} = \boldsymbol{H}^{(m)}\boldsymbol{U}}$$
(5.1b)

$$\boldsymbol{K} = \sum_{m} \boldsymbol{K}^{(m)}$$
(5.1c)

$$\boldsymbol{R} = \sum_{m} \boldsymbol{R}_{B}^{(m)} \tag{5.1d}$$

$$\boldsymbol{\epsilon}^{(m)} = \boldsymbol{B}^{(m)} \boldsymbol{U} \tag{5.1e}$$

$$\boldsymbol{U}^{T} = \begin{bmatrix} U_{1} & U_{2} & \cdots & U_{n} \end{bmatrix}, \quad (n = \text{all d.o.f. of element assemblage})$$
(5.1f)

$$\boldsymbol{K}^{(m)} = \int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} dV^{(m)}$$
(5.1g)

$$\boldsymbol{R}_{B}^{(m)} = \int_{V^{(m)}} \boldsymbol{H}^{(m)T} \, \boldsymbol{f}^{B^{(m)}} \, dV^{(m)}$$
(5.1h)

Surface loads

Recall that in the principle of virtual displacements,

"surface" loads =
$$\int_{S_f} \overline{U}^{S_f T} \boldsymbol{f}^{S_f} \, dS_f$$
(5.2)

$$\boldsymbol{u}^{S(m)} = \boldsymbol{H}^{S(m)} \boldsymbol{U}$$
(5.3)

$$\left. \boldsymbol{H}^{S^{(m)}} = \boldsymbol{H}^{(m)} \right|_{\text{evaluated at the surface}}$$
(5.4)

Substitute into (5.2)

$$\overline{\boldsymbol{U}}^T \int_{S^{(m)}} \boldsymbol{H}^{S^{(m)}T} \boldsymbol{f}^{S^{(m)}} dS^{(m)}$$
(5.5)

for element (m) and one surface of that element.

$$\boldsymbol{R}_{s}^{(m)} = \int_{S^{(m)}} \boldsymbol{H}^{S^{(m)}T} \boldsymbol{f}^{S^{(m)}} dS^{(m)}$$
(5.6)

Need to add contributions from all surfaces of all loaded external elements.

$$KU = R_B + R_S + R_c \tag{5.7}$$

where \boldsymbol{R}_c are concentrated nodal loads.

Assume

- (5.7) has been established without any displacement boundary conditions.
- We, however, know nodal displacements U_b (rewriting (5.7)).

$$\boldsymbol{K}\boldsymbol{U} = \boldsymbol{R} \Rightarrow \begin{bmatrix} \boldsymbol{K}_{aa} & \boldsymbol{K}_{ab} \\ \boldsymbol{K}_{ba} & \boldsymbol{K}_{bb} \end{bmatrix} \begin{pmatrix} \boldsymbol{U}_{a} \\ \boldsymbol{U}_{b} \end{pmatrix} = \begin{pmatrix} \boldsymbol{R}_{a} \\ \boldsymbol{R}_{b} \end{pmatrix}$$
(5.8)

Solve for U_a :

$$\boldsymbol{K}_{aa}\boldsymbol{U}_{a} = \boldsymbol{R}_{a} - \boldsymbol{K}_{ab}\boldsymbol{U}_{b} \tag{5.9}$$

where U_b is known!

Then use

$$\boldsymbol{K}_{ba}\boldsymbol{U}_{a} + \boldsymbol{K}_{bb}\boldsymbol{U}_{b} = \boldsymbol{R}_{b} + \boldsymbol{R}_{r} \tag{5.10}$$

where \boldsymbol{R}_r are unknown reactions.

Example 4.6 textbook

$$\begin{bmatrix} u(x,y)\\ v(x,y) \end{bmatrix} = \boldsymbol{H} \begin{pmatrix} u_2\\ u_3\\ u_4\\ v_1\\ v_2\\ v_3\\ v_4 \end{pmatrix}$$
(5.12)

If we can set this relation up, then clearly we can get $H^{(1)}$, $H^{(2)}$, $H^{(3)}$, $H^{(4)}$.

$$\boldsymbol{u}^{(m)} = \boldsymbol{H}^{(m)}\boldsymbol{U} \tag{5.13}$$

Also want $\epsilon^{(m)} = B^{(m)}U$. We want **H**. We could proceed this way

$$u(x,y) = a_1 + a_2 x + a_3 y + a_4 x y$$
(5.14)

$$v(x,y) = b_1 + b_2 x + b_3 y + b_4 x y$$
(5.15)

Express $a_1 \ldots a_4$, $b_1 \ldots b_4$ in terms of the nodal displacements $u_1 \ldots u_4$, $v_1 \ldots v_4$. (e.g.) $u(1,1) = a_1 + a_2 + a_3 + a_4 = u_1$.

$$h_1(x,y) = \frac{1}{4}(1+x)(1+y)$$
 interpolation function
for node 1.

$$h_2(x,y) = \frac{1}{4}(1-x)(1+y)$$

$$\begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix} = \underbrace{\begin{bmatrix} h_1 & h_2 & h_3 & h_4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & h_1 & h_2 & h_3 & h_4 \end{bmatrix}}_{\boldsymbol{H} (2\mathbf{x}\mathbf{8})} \begin{bmatrix} u_3 \\ u_4 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$
(5.18)

We also want,

$$\begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \gamma_{xy} \end{pmatrix} = \underbrace{\begin{bmatrix} h_{1,x} & h_{2,x} & h_{3,x} & h_{4,x} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & h_{1,y} & h_{2,y} & h_{3,y} & h_{4,y} \\ h_{1,y} & h_{2,y} & h_{3,y} & h_{4,y} & h_{1,x} & h_{2,x} & h_{3,x} & h_{4,x} \end{bmatrix}}_{B (3x8)} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$
(5.19)

$$\epsilon_{xx} = \frac{\partial u}{\partial x}$$

$$\epsilon_{yy} = \frac{\partial v}{\partial y}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
(5.20)
(5.21)
(5.22)

 2.094 — Finite Element Analysis of Solids and Fluids
 Fall '08

 Lecture 6 - Finite element formulation, example, convergence

 Prof. K.J. Bathe
 MIT OpenCourseWare

6.1 Example

Reading: Ex. 4.6 in the text

$$\boldsymbol{K}\boldsymbol{U} = \boldsymbol{R}; \quad \boldsymbol{R} = \boldsymbol{R}_B + \boldsymbol{R}_s + \boldsymbol{R}_c + \boldsymbol{R}_r \tag{6.1}$$

$$\boldsymbol{K} = \sum_{m} \boldsymbol{K}^{(m)}; \quad \boldsymbol{K}^{(m)} = \int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} dV^{(m)}$$
(6.2)

$$\boldsymbol{R}_{B} = \sum_{m} \boldsymbol{R}_{B}^{(m)}; \quad \boldsymbol{R}_{B}^{(m)} = \int_{V^{(m)}} \boldsymbol{H}^{(m)^{T}} \boldsymbol{f}^{B(m)} dV^{(m)}$$
(6.3)

6.1.1 F.E. model

$$\boldsymbol{K}\Big|_{\text{el. (2)}} = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & v_1 & v_2 & v_3 & v_4 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \bigcirc & \Box & \bigtriangleup & \times & \times & \times & \times \\ \vdots & & & & & & \\ \vdots & & & & & & & \\ \end{bmatrix} \begin{bmatrix} \circlearrowright & u_1 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$
(6.4)

In practice,

$$\boldsymbol{K}\Big|_{\mathrm{el}} = \int_{V} \boldsymbol{B}^{T} \boldsymbol{C} \boldsymbol{B} \, dV; \quad \boldsymbol{\epsilon} = \boldsymbol{B} \begin{pmatrix} u_{1} \\ \vdots \\ u_{4} \\ v_{1} \\ \vdots \\ v_{4} \end{pmatrix}$$
(6.5)

where \boldsymbol{K} is 8x8 and \boldsymbol{B} is 3x8.

Assume we have \boldsymbol{K} (8x8) for el. (2)

Consider,

$$\boldsymbol{R}_{S} = \int_{S} \boldsymbol{H}^{S^{T}} \boldsymbol{f}^{S} dS; \quad \boldsymbol{H}^{S} = \boldsymbol{H} \Big|_{\text{on surface}}$$
(6.7)

$$\boldsymbol{H} = \begin{bmatrix} h_1 & h_2 & h_3 & h_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & h_1 & h_2 & h_3 & h_4 \end{bmatrix} \quad \begin{array}{l} \leftarrow u(x,y) \\ \leftarrow v(x,y) \end{array}$$
(6.8)

$$\boldsymbol{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_4 \\ v_1 \\ \vdots \\ v_4 \end{pmatrix}$$
(6.9)

$$\begin{aligned} \boldsymbol{H}^{S} &= \boldsymbol{H} \Big|_{y=+1} \\ &= \begin{bmatrix} \frac{1}{2}(1+x) & \frac{1}{2}(1-x) & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{aligned}$$
(6.10) (6.11)

$$= \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2}(1+x) & \frac{1}{2}(1-x) & 0 & 0 \end{bmatrix}$$
(6.11)

From (6.7);

$$\boldsymbol{R}_{S} = \int_{-1}^{+1} \begin{bmatrix} \frac{1}{2}(1+x) & 0\\ \frac{1}{2}(1-x) & 0\\ 0 & \frac{1}{2}(1+x)\\ 0 & \frac{1}{2}(1-x) \end{bmatrix} \begin{bmatrix} 0\\ -p(x) \end{bmatrix} \underbrace{(0.1)}_{\text{thickness}} dx$$
(6.12)

$$\boldsymbol{R}_{S} = \begin{bmatrix} 0\\ 0\\ -p_{0}(0.1)\\ -p_{0}(0.1) \end{bmatrix}$$
(6.13)

total load = Pox0.1x2

6.1.2 Higher-order elements

Want
$$h_1, h_2, h_3, h_4, h_5$$

 $u(x, y) = \sum_{i=1}^5 h_i u_i.$

 $h_i = 1$ at node *i* and 0 at all other nodes.

$$h_5 = \frac{1}{2}(1 - x^2)(1 + y)$$

$$h_1 = \frac{1}{4}(1+x)(1+y) - \frac{1}{2}h_5 \tag{6.14}$$

$$h_2 = \frac{1}{4}(1-x)(1+y) - \frac{1}{2}h_5 \tag{6.15}$$

$$h_3 = \frac{1}{4}(1-x)(1-y) \tag{6.16}$$

$$h_1 = \frac{1}{4}(1+x)(1-y) \tag{6.17}$$

Note:

$$\sum h_i = 1$$

We must have $\sum_i h_i = 1$ to satisfy the rigid body mode condition.

$$u(x,y) = \sum_{i} h_i u_i \tag{6.18}$$

Assume all nodal point displacements $= u^*$. Then,

$$u(x,y) = \sum_{i} h_{i}u^{*} = u^{*} \sum_{i} h_{i} = u^{*}$$
(6.19)

From (6.1),

$$\left(\sum_{m} \boldsymbol{K}^{(m)}\right) \boldsymbol{U} = \boldsymbol{R}$$
(6.20)

$$\sum_{m} \left[\int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} dV^{(m)} \right] \boldsymbol{U} = \boldsymbol{R}$$
(6.21)

where $C^{(m)}B^{(m)}U = \tau^{(m)}$. (Assume we calculated U.)

$$\sum_{m} \int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{\tau}^{(m)} \, d \, V^{(m)} = \boldsymbol{R}$$
(6.22)

$$\sum_{m} \mathbf{F}^{(m)} = \mathbf{R}; \quad \mathbf{F}^{(m)} = \int_{V^{(m)}} \mathbf{B}^{(m)T} \boldsymbol{\tau}^{(m)} \, d \, V^{(m)}$$
(6.23)

Two properties

I. The sum of the $F^{(m)}$'s at any node is equal to the applied external forces.

II. Every element is in equilibrium under its ${\pmb F}^{(m)}$

$$\hat{\overline{U}}^{T} F^{(m)} = \underbrace{\hat{\overline{U}}^{T} \int_{V^{(m)}} B^{(m)T}}_{=\overline{\epsilon}^{(m)T}} \tau^{(m)} dV^{(m)}$$

$$(6.24)$$

$$\int_{\overline{U}^{-(m)T}} (m) dV^{(m)}$$

$$(6.25)$$

$$= \int_{V^{(m)}} \epsilon^{(m)} \tau^{(m)} dV^{(m)}$$
(6.25)
= 0 (6.26)

where $\hat{\overline{U}}^T$ = virtual nodal point displacement.

Apply rigid body displacement.

If we move the element virtually in the rigid body modes, $\bar{\epsilon}^{(m)}$ is zero. Therefore the virtual work obtained due to virtual motion of the element is zero. Then the element is in equilibrium under its $F^{(m)}$.

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 7 - Isoparametric elements MIT OpenCourseWare

Reading: Sec. 5.1-5.3

$\left(r,s\right)$ are natural coordinate system or isoparametric coordinate system.

$$x = \sum_{i=1}^{4} h_i x_i \tag{7.1}$$

$$y = \sum_{i=1}^{4} h_i y_i \tag{7.2}$$

where

$$h_1 = \frac{1}{4}(1+r)(1+s) \tag{7.3}$$

$$h_2 = \frac{1}{4}(1-r)(1+s) \tag{7.4}$$

$$u(r,s) = \sum_{i=1}^{4} h_i u_i$$
(7.5)

$$v(r,s) = \sum_{i=1}^{4} h_i v_i$$
(7.6)

$$\boldsymbol{\epsilon} = \boldsymbol{B}\hat{\boldsymbol{u}} \quad \hat{\boldsymbol{u}}^T = \begin{bmatrix} u_1 & u_2 & \cdots & v_4 \end{bmatrix}$$
(7.7)

$$\begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{bmatrix} = B\hat{u}$$
(7.8)

$$\begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial s} \end{pmatrix} = \underbrace{\begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \end{bmatrix}}_{J} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix}$$
(7.9)

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \mathbf{J}^{-1} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial s} \end{pmatrix}$$
(7.10)

 \boldsymbol{J} must be non-singular which ensures that there is unique correspondence between (x,y) and (r,s). Hence,

$$\boldsymbol{K} = \int_{-1}^{1} \int_{-1}^{1} \boldsymbol{B}^{T} \boldsymbol{C} \boldsymbol{B} \underbrace{\operatorname{tdet}(\boldsymbol{J}) \, dr \, ds}_{d \, V}$$
(7.11)

Also,
$$\boldsymbol{R}_B = \int_{-1}^{1} \int_{-1}^{1} \boldsymbol{H}^T \boldsymbol{f}^B \ t \det(\boldsymbol{J}) \ dr \ ds$$
 (7.12)

Numerical integration (Gauss formulae) (Ch. 5.5)

$$\boldsymbol{K} \cong t \sum_{i} \sum_{j} \boldsymbol{B}_{ij}^{T} \boldsymbol{C} \boldsymbol{B}_{ij} \, \det(\boldsymbol{J}_{ij}) \times (\text{weight } i, j)$$
(7.13)

2x2 Gauss integration,

$$(i = 1, 2)$$
 (7.14)
 $(j = 1, 2)$ (weight $i, j = 1$ in this case) (7.15)

9-node element

$$x = \sum_{i=1}^{9} h_i x_i \tag{7.16}$$

$$y = \sum_{\substack{i=1\\9}}^{9} h_i y_i \tag{7.17}$$

$$u = \sum_{\substack{i=1\\9}} h_i u_i \tag{7.18}$$

$$v = \sum_{i=1}^{N} h_i v_i \tag{7.19}$$

Use 3x3 Gauss integration

For rectangular elements, J = const

Consider the following element,

Note, here we could use $h_i(x, y)$ directly.

$$\boldsymbol{J} = \begin{bmatrix} 3\left(=\frac{6}{2}\right) & 0\\ 0 & \frac{3}{2} \end{bmatrix}$$
(7.20)

Then, we can determine the number of appropriate integration points by investigating the maximum order of $B^T C B$.

For a rectangular element, 3x3 Gauss integration gives exact K matrix. If the element is distorted, a K matrix which is still accurate enough will be obtained, (if high enough integration is used).

Reading: Sec. 5.5.5,

Convergence Principle of virtual work:

$$\int_{V} \overline{\boldsymbol{\epsilon}}^{T} \boldsymbol{C} \boldsymbol{\epsilon} \, dV = \mathcal{R}(\overline{\boldsymbol{u}}) \tag{7.21}^{4.3}$$

Find \boldsymbol{u} , solution, in V, vector space (any continuous function that satisfies boundary conditions), satisfying

$$\int_{V} \overline{\boldsymbol{\epsilon}}^{T} \boldsymbol{C} \boldsymbol{\epsilon} \, dV = \underbrace{a(\boldsymbol{u}, \boldsymbol{v})}_{\text{bilinear form}} = \underbrace{(\boldsymbol{f}, \boldsymbol{v})}_{\mathcal{R}(\boldsymbol{v})} \quad \text{for all } \boldsymbol{v}, \text{ an element of V.}$$
(7.22)

Example:

~

Finite Element problem Find $u_h \in V_h$, where V_h is F.E. vector space such that

$$a(\boldsymbol{u}_h, \boldsymbol{v}_h) = (\boldsymbol{f}, \boldsymbol{v}_h) \quad \forall \boldsymbol{v}_h \in \mathcal{V}_h$$

$$(7.23)$$

Size of $\mathbf{V}_h \Rightarrow \#$ of independent DOFs (here it's 12).

Note:

 $\underbrace{a(\boldsymbol{w},\boldsymbol{w})}_{2\text{x (strain energy when imposing }\boldsymbol{w})} > 0 \text{ for } \boldsymbol{w} \in \mathrm{V} \quad (\boldsymbol{w} \neq \boldsymbol{0})$

Also,

$$a(\boldsymbol{w}_h, \boldsymbol{w}_h) > 0 \text{ for } \boldsymbol{w}_h \in \mathcal{V}_h \quad (\mathcal{V}_h \subset \mathcal{V}, \, w_h \neq 0)$$

Property I Define: $e_h = u - u_h$.

From (7.22), $a(\boldsymbol{u}, \boldsymbol{v}_h) = (\boldsymbol{f}, \boldsymbol{v}_h)$ (7.24)

From (7.23),
$$a(u_h, v_h) = (f, v_h)$$
 (7.25)

Hence,

$$a(\boldsymbol{u} - \boldsymbol{u}_h, \boldsymbol{v}_h) = 0 \tag{7.26}$$
$$a(\boldsymbol{e}_h, \boldsymbol{v}_h) = 0 \tag{7.27}$$

(error is orthogonal in that sense to all \boldsymbol{v}_h in F.E. space).

Property II

$$a(\boldsymbol{u}_h, \boldsymbol{u}_h) \le a(\boldsymbol{u}, \boldsymbol{u})$$
(7.28)

Proof:

$$a(\boldsymbol{u}, \boldsymbol{u}) = a(\boldsymbol{u}_h + \boldsymbol{e}_h, \boldsymbol{u}_h + \boldsymbol{e}_h)$$
(7.29)

$$= a(\boldsymbol{u}_h, \boldsymbol{u}_h) + \underline{2a(\boldsymbol{u}_h, \boldsymbol{e}_h)}^0 \text{ by Prop. I} + \underline{a(\boldsymbol{e}_h, \boldsymbol{e}_h)}_{>0}$$
(7.30)

$$\therefore a(\boldsymbol{u}, \boldsymbol{u}) \ge a(\boldsymbol{u}_h, \boldsymbol{u}_h) \tag{7.31}$$

2.094 — Finite Element Analysis of Solids and Fluids	Fall '08					
Lecture 8 - Convergence of displacement-based FEM						
Prof. K.J. Bathe MIT OpenCo	ourseWare					

(A) Find

$$\boldsymbol{u} \in \mathbf{V}$$
 such that $a(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{f}, \boldsymbol{v}) \quad \forall \boldsymbol{v} \in \mathbf{V} \text{ (Mathematical model)}$ (8.1)

$$a(\boldsymbol{v}, \boldsymbol{v}) > 0 \quad \forall \boldsymbol{v} \in \mathbf{V}, \quad \boldsymbol{v} \neq \boldsymbol{0}.$$
 (8.2)

where (8.2) implies that structures are supported properly. E.g.

(B) F.E. Problem Find

 $\boldsymbol{u}_h \in \mathcal{V}_h$ such that $a(\boldsymbol{u}_h, \boldsymbol{v}_h) = (\boldsymbol{f}, \boldsymbol{v}_h) \quad \forall \boldsymbol{v}_h \in \mathcal{V}_h$ (8.3)

 $a(\boldsymbol{v}_h, \boldsymbol{v}_h) > 0 \quad \forall \boldsymbol{v}_h \in \mathcal{V}_h, \quad \boldsymbol{v}_h \neq 0$ (8.4)

Properties $\boldsymbol{e}_h = \boldsymbol{u} - \boldsymbol{u}_h$

(I)
$$a(\boldsymbol{e}_h, \boldsymbol{v}_h) = 0 \quad \forall \boldsymbol{v}_h \in \mathbf{V}_h$$
 (8.5)

$$(II) \ a(\boldsymbol{u}_h, \boldsymbol{u}_h) \le a(\boldsymbol{u}, \boldsymbol{u}) \tag{8.6}$$

(C) Assume $\operatorname{Mesh}\Big|_{h_1}$ "is contained in" $\operatorname{Mesh}\Big|_{h_2}$

e.g. $\operatorname{Mesh}\Big|_{h_1}$ not contained in $\operatorname{Mesh}\Big|_{h_2}$

We assume (C), but need another property (independent of (C))

(III)
$$a(\boldsymbol{e}_h, \boldsymbol{e}_h) \le a(\boldsymbol{u} - \boldsymbol{v}_h, \boldsymbol{u} - \boldsymbol{v}_h) \quad \forall \boldsymbol{v}_h \in \mathbf{V}_h$$

$$(8.7)$$

 \boldsymbol{u}_h minimizes! (Recall $\boldsymbol{e}_h = \boldsymbol{u} - \boldsymbol{u}_h$)

Proof: Pick $\boldsymbol{w}_h \in \mathbf{V}_h$.

$$a(\boldsymbol{e}_{h} + \boldsymbol{w}_{h}, \boldsymbol{e}_{h} + \boldsymbol{w}_{h}) = a(\boldsymbol{e}_{h}, \boldsymbol{e}_{h}) + 2a(\boldsymbol{e}_{h}, \boldsymbol{w}_{h})^{-0} + \underbrace{a(\boldsymbol{w}_{h}, \boldsymbol{w}_{h})}_{\geq 0}$$
(8.8)

Equality holds for $(\boldsymbol{w}_h = \boldsymbol{0})$

$$a(\boldsymbol{e}_h, \boldsymbol{e}_h) \le a(\boldsymbol{e}_h + \boldsymbol{w}_h, \boldsymbol{e}_h + \boldsymbol{w}_h) \tag{8.9}$$

$$=a(\boldsymbol{u}-\boldsymbol{u}_h+\boldsymbol{w}_h,\boldsymbol{u}-\boldsymbol{u}_h+\boldsymbol{w}_h)$$
(8.10)

Take $\boldsymbol{w}_h = \boldsymbol{u}_h - \boldsymbol{v}_h$.

 $a(\boldsymbol{e}_h, \boldsymbol{e}_h) \le a(\boldsymbol{u} - \boldsymbol{v}_h, \boldsymbol{u} - \boldsymbol{v}_h)$ (8.11)

Using property (III) and (C), we can say that we will converge monotonically, from below, to a(u, u):

Pascal triangle (2D)

(Ch. 4.3)

error in displacement
$$\sim C \cdot h^{k+1}$$
 (8.12)

(C is a constant determined by the exact solution, material property...)

error in stresses
$$\sim C \cdot h^k$$
 (8.13)

error in strain energy
$$\sim C \cdot h^{2k}$$
 (\leftarrow these C are different) (8.14)

Hence,

$$E - E_h = C \cdot h^{2k}$$
 (roughly equal to) (8.15)

By theory,

$$\log\left(E - E_h\right) = \log C + 2k\log h \tag{8.16}$$

By experiment, we can evaluate $\log(E - E_h)$ for different meshes and plot $\log(E - E_h)$ vs. $\log h$

We need to use graded meshes if we have high stress gradients.

Example Consider an almost incompressible material:

$$\epsilon_V = \text{vol. strain}$$
 (8.17)

or

$$\nabla \cdot \boldsymbol{v} \to \text{very small or zero}$$
 (8.18)

We can "see" difficulties:

 $p = -\kappa \epsilon_V \quad \kappa = \text{ bulk modulus}$ (8.19)

As the material becomes incompressible ($\nu = 0.3 \rightarrow 0.4999$)

$$\begin{cases} \kappa \to \infty \\ \epsilon_V \to 0 \end{cases} \qquad p \to \text{ finite number}$$

$$(8.20)$$

(Small error in ϵ_V results in huge error on pressure as $\kappa \to \infty$, the constant C in (8.15) can be very large \Rightarrow locking)

2.094 — Finite Element Analysis of Solids and Fluids	Fall '08	
Lecture 9 - u/p formulation		
Prof. K.J. Bathe	MIT OpenCourseWare	
We want to solve	Rea Sec.	ding: 4.4.3
I. Equilibrium		
$\begin{cases} \tau_{ij,j} + f_i^B = 0 & \text{in Volume} \\ \tau_{ij}n_j = f_i^{S_f} & \text{on } S_f \end{cases}$	(9.1)	
II. Compatibility		
III. Stress-strain law		
Use the principle of virtual displacements		
$\int_{V} \overline{\boldsymbol{\epsilon}}^{T} \boldsymbol{C} \boldsymbol{\epsilon} \ dV = \mathcal{R}$	(9.2)	
We recognize that if $\nu \to 0.5$		
$\epsilon_V \to 0 (\epsilon_V = \epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz})$	(9.3)	
$\kappa = \frac{E}{3(1-2\nu)} \to \infty$	(9.4)	
$p = -\kappa \epsilon_V$ must be accurately computed	(9.5)	
Solution		
$\tau_{ij} = \kappa \epsilon_V \delta_{ij} + 2G \epsilon'_{ij}$	(9.6)	
where		
$\delta_{ij} = \text{Kronecker delta} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$	(9.7)	
Deviatoric strains:		
$\epsilon'_{ij} = \epsilon_{ij} - rac{\epsilon_V}{3} \delta_{ij}$	(9.8)	
$ au_{ij} = -p\delta_{ij} + 2G\epsilon'_{ij} \left(p = -\frac{\tau_{kk}}{3}\right)$	(9.9)	
(9.2) becomes		
$\int_{V} \overline{\boldsymbol{\epsilon}}'^{T} \boldsymbol{C}' \boldsymbol{\epsilon}' \ dV + \int_{V} \overline{\boldsymbol{\epsilon}}_{V} \kappa \boldsymbol{\epsilon}_{V} \ dV = \mathcal{R}$	(9.10)	

$$\int_{V} \overline{\boldsymbol{\epsilon}'}^{T} \boldsymbol{C}' \boldsymbol{\epsilon}' \, dV - \int_{V} \overline{\boldsymbol{\epsilon}}_{V}^{T} p \, dV = \mathcal{R}$$

$$(9.11)$$

We need another equation because we now have another unknown p.

$$p + \kappa \epsilon_V = 0 \tag{9.12}$$

$$\int_{V} \overline{p} \left(p + \kappa \epsilon_{V} \right) \, dV = 0 \tag{9.13}$$

$$-\int_{V}\overline{p}\left(\epsilon_{V}+\frac{p}{\kappa}\right) \, dV = 0 \tag{9.14}$$

For an element,

$$\boldsymbol{u} = \boldsymbol{H}\hat{\boldsymbol{u}} \tag{9.15}$$

$$\boldsymbol{\epsilon}' = \boldsymbol{B}_D \hat{\boldsymbol{u}} \tag{9.16}$$

$$\epsilon_V = \boldsymbol{B}_V \hat{\boldsymbol{u}} \tag{9.17}$$

$$p = \boldsymbol{H}_p \hat{\boldsymbol{p}} \tag{9.18}$$

$$\epsilon_{V} = \epsilon_{xx} + \epsilon_{yy}$$

$$\epsilon_{V} = \left[\begin{array}{c} \epsilon_{xx} - \frac{1}{3} \left(\epsilon_{xx} + \epsilon_{yy} \right) \\ \epsilon_{yy} - \frac{1}{3} \left(\epsilon_{xx} + \epsilon_{yy} \right) \\ \gamma_{xy} \\ -\frac{1}{3} \left(\epsilon_{xx} + \epsilon_{yy} \right) \end{array} \right]$$

$$(9.19)$$

$$(9.20)$$

Note: $\epsilon_{zz} = 0$ but $\epsilon'_{zz} \neq 0!$

 $p = \boldsymbol{H}_p \hat{\boldsymbol{p}} = [1]\{p_0\}$ (9.21)7 (22)

$$p(x,y) = p_0 \tag{9.22}$$

We obtain from (9.11) and (9.14)

$$\begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{up} \\ \mathbf{K}_{pu} & \mathbf{K}_{pp} \end{bmatrix} \begin{bmatrix} \hat{u} \\ \hat{p} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}$$
(9.23)

$$\boldsymbol{K}_{uu} = \int_{V} \boldsymbol{B}_{D}^{T} \boldsymbol{C}' \boldsymbol{B}_{D} \, dV \tag{9.24a}$$

$$\boldsymbol{K}_{up} = -\int_{V} \boldsymbol{B}_{V}^{T} \boldsymbol{H}_{p} \, dV \tag{9.24b}$$

$$\boldsymbol{K}_{pu} = -\int_{V} \boldsymbol{H}_{p}^{T} \boldsymbol{B}_{V} \, dV \tag{9.24c}$$

$$\boldsymbol{K}_{pp} = -\int_{V} \boldsymbol{H}_{p}^{T} \frac{1}{\kappa} \boldsymbol{H}_{p} \, dV \tag{9.24d}$$

In practice, we use elements that use pressure interpolations per element, not continuous between elements. For example:

Then, unless $\nu = 0.5$ (where $\mathbf{K}_{pp} = \mathbf{0}$), we can use static condensation on the pressure dof's. Use $\hat{\mathbf{p}}$ equations to eliminate $\hat{\mathbf{p}}$ from the $\hat{\mathbf{u}}$ equations.

$$\left(\boldsymbol{K}_{uu} - \boldsymbol{K}_{up}\boldsymbol{K}_{pp}^{-1}\boldsymbol{K}_{pu}\right)\hat{\boldsymbol{u}} = \boldsymbol{R}$$
(9.25)

(In practice, ν can be 0.499999...)

The "best element" is the 9/3 element. (9 nodes for displacement and 3 pressure dof's).

$$p(x,y) = p_0 + p_1 x + p_2 y \tag{9.26}$$

The inf-sup condition

Reading: Sec. 4.5

$$\underbrace{\inf_{q_h \in Q_h} \sup_{v_h \in V_h} \left[\frac{\int_{\text{Vol}} q_h \, \overbrace{\nabla \cdot v_h}^{=\epsilon_V} d\text{Vol}}{\underbrace{\|q_h\| \, \|v_h\|}_{\text{for normalization}}} \right] \ge \beta > 0 \tag{9.27}$$

 Q_h : pressure space.

If "this" holds, the element is optimal for the displacement assumption used (ellipticity must also be satisfied).

Note:

infimum = largest lower bound supremum = least upper bound

For example,

$$\inf \{1, 2, 4\} = 1$$
$$\sup \{1, 2, 4\} = 4$$
$$\inf \{x \in \mathbf{R}; \quad 0 < x < 2\} = 0$$
$$\sup \{x \in \mathbf{R}; \quad 0 < x < 2\} = 2$$

(9.23) rewritten ($\kappa = \infty$, full incompressibility). Diagonalize using eigenvalues/eigenvectors.

For a mesh of element size h we want $\beta_h > 0$ as we refine the mesh, $h \to 0$

For (1,1] in matrix) assume the circled entry is the minimum (inf) of (1,1]. Also, all entries in the matrix not shown are zero.

Case 1 $\beta_h = 0$

$$\Rightarrow \begin{cases} 0 \cdot u_h|_i = 0 \quad \text{(from the bottom equation)} \\ \underbrace{\alpha}_{\neq 0} \cdot u_h|_i + 0 \cdot p_h|_j = R_h|_i \quad \text{(from the top equation)} \end{cases}$$

- \Rightarrow no equation for $p_h|_j$
- \Rightarrow spurious pressure! (any pressure satisfies equation)

Case 2 $\beta_h = \text{small} = \epsilon$

$$\begin{split} \epsilon \cdot u_h|_i &= 0 \quad \Rightarrow \boxed{u_h|_i = 0} \\ \therefore \epsilon \cdot \quad p_h|_j + u_h|_i \cdot \alpha &= R_h|_i \\ \Rightarrow p_h|_j &= \frac{R_h|_i}{\epsilon} \quad \Rightarrow \begin{pmatrix} \text{displ.} &= 0 \\ \text{pressure} \quad \to \quad \text{large} \end{pmatrix} \text{ as } \epsilon \text{ is small} \end{split}$$

The behavior of given mesh when bulk modulus increases: locking, large pressures. See Example 4.39 textbook.

We developed

$$\int_{^{t}V}{}^{t}\tau_{ijt}\bar{e}_{ij}d^{t}V = {}^{t}\mathcal{R}$$
(10.1)

Reading:

$${}_{t}\overline{e}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_{i}}{\partial^{t} x_{j}} + \frac{\partial \overline{u}_{j}}{\partial^{t} x_{i}} \right)$$
(10.2)

$$\int_{t_V} {}^t \tau_{ij} \delta_t e_{ij} d^t V = {}^t \mathcal{R}$$
(10.3)

$$\delta_t e_{ij} = \frac{1}{2} \left(\frac{\partial (\delta u_i)}{\partial t x_j} + \frac{\partial (\delta u_j)}{\partial t x_i} \right) \quad (\equiv t \overline{e}_{ij})$$
(10.4)

In FEA:

$${}^{t}\boldsymbol{F} = {}^{t}\boldsymbol{R} \tag{10.5}$$

In linear analysis

$${}^{t}\boldsymbol{F} = \boldsymbol{K} \; {}^{t}\boldsymbol{U} \Rightarrow \boldsymbol{K}\boldsymbol{U} = \boldsymbol{R} \tag{10.6}$$

In general nonlinear analysis, we need to iterate. Assume the solution is known "at time t"

$${}^{t}\boldsymbol{x} = {}^{0}\boldsymbol{x} + {}^{t}\boldsymbol{u} \tag{10.7}$$

Hence ${}^{t}\boldsymbol{F}$ is known. Then we consider

`

$${}^{t+\Delta t}\boldsymbol{F} = {}^{t+\Delta t}\boldsymbol{R} \tag{10.8}$$

Consider the loads (applied external loads) to be deformation-independent, e.g.

Then we can write

$${}^{t+\Delta t}\boldsymbol{F} = {}^{t}\boldsymbol{F} + \boldsymbol{F} \tag{10.9}$$

$$^{t+\Delta t}\boldsymbol{U} = {}^{t}\boldsymbol{U} + \boldsymbol{U} \tag{10.10}$$

where only ${}^{t}\boldsymbol{F}$ and ${}^{t}\boldsymbol{U}$ are known.

$$F \cong {}^{t}K\Delta U$$
, ${}^{t}K$ = tangent stiffness matrix at time t (10.11)

From (10.8),

$${}^{t}\boldsymbol{K}\Delta\boldsymbol{U} = {}^{t+\Delta t}\boldsymbol{R} - {}^{t}\boldsymbol{F}$$
(10.12)

We use this to obtain an approximation to U. We obtain a more accurate solution for U (i.e. ${}^{t+\Delta t}F$) using

$${}^{t+\Delta t}\boldsymbol{K}^{(i-1)}\Delta\boldsymbol{U}^{(i)} = {}^{t+\Delta t}\boldsymbol{R} - {}^{t+\Delta t}\boldsymbol{F}^{(i-1)}$$
(10.13)

$${}^{t+\Delta t}\boldsymbol{U}^{(i)} = {}^{t+\Delta t}\boldsymbol{U}^{(i-1)} + \Delta \boldsymbol{U}^{(i)}$$
(10.14)

Also,

$${}^{t+\Delta t}\boldsymbol{F}^{(0)} = {}^{t}\boldsymbol{F} \tag{10.15}$$

$${}^{t+\Delta t}\boldsymbol{K}^{(0)} = {}^{t}\boldsymbol{K} \tag{10.16}$$

$$^{t+\Delta t}\boldsymbol{U}^{(0)} = {}^{t}\boldsymbol{U} \tag{10.17}$$

Iterate for i = 1, 2, 3... until convergence. Convergence is reached when

$$\left\|\Delta \boldsymbol{U}^{(i)}\right\|_{2} < \epsilon_{D}$$

$$\left\|^{t+\Delta t}\boldsymbol{R} - {}^{t+\Delta t}\boldsymbol{F}^{(i-1)}\right\|_{2} < \epsilon_{F}$$
(10.18)
(10.19)

Note:

$$\|\boldsymbol{a}\|_2 = \sqrt{\sum_i (a_i)^2}$$
 $\sum_{i=1,2,3...} \Delta \boldsymbol{U}^{(i)} = \boldsymbol{U}$

 $\Delta U^{(1)}$ in (10.13) is ΔU in (10.12).

(10.13) is the *full* Newton-Raphson iteration.

How we could (in principle) calculate ${}^{t}K$

Process

- Increase the displacement ${}^{t}U_{i}$ by ϵ , with no increment for all ${}^{t}U_{j}, j \neq i$
- calculate ${}^{t+\epsilon}F$
- the *i*-th column in ${}^{t}\boldsymbol{K} = \left({}^{t+\epsilon}\boldsymbol{F} {}^{t}\boldsymbol{F}\right)/\epsilon = \frac{\partial^{t}\boldsymbol{F}}{\partial^{t}U_{i}}.$

So, perform this process for i = 1, 2, 3, ..., n, where n is the total number of degrees of freedom. Pictorially,

A general difficulty: we cannot "simply" increment Cauchy stresses.

- ${}^{t+\Delta t}\tau_{ij}$ referred to area at time $t+\Delta t$
- ${}^{t}\tau_{ij}$ referred to area at time t.

We define a new stress measure, 2nd Piola - Kirchhoff stress, ${}^{t+\Delta t}S_{ij}$, where 0 in the leading subscript refers to original configuration. Then,

$${}^{t+\Delta t}_{0}S_{ij} = {}^{t}_{0}S_{ij} + {}_{0}S_{ij} \tag{10.20}$$

The strain measure energy-conjugate to the 2nd P-K stress ${}_{0}^{t}S_{ij}$ is the Green-Lagrange strain ${}_{0}^{t}\epsilon_{ij}$ Then,

$$\int_{0V} {}^{t}S_{ij} \,\delta \,{}^{t}\epsilon_{ij} \,d^{0}V = {}^{t}\mathcal{R}$$

$$(10.21)$$

Also,

$$\int_{{}^{0}V} {}^{t+\Delta t} S_{ij} \,\delta^{t+\Delta t}_{0} \epsilon_{ij} \,d^{0}V = {}^{t+\Delta t} \mathcal{R}$$

$$(10.22)$$

Example

$${}^{t}\boldsymbol{F} = {}^{t}\boldsymbol{R}$$
(10.23)
$${}^{t+\Delta t}\boldsymbol{F} = {}^{t+\Delta t}\boldsymbol{R}$$
(10.24)

(every time it is in equilibrium)

(10.13) and (10.14) give:

$$i = 1,$$

$${}^{t+\Delta t} \mathbf{K}^{(0)} \Delta \mathbf{U}^{(1)} = {}^{t+\Delta t} \mathbf{R} - {}^{t+\Delta t} \mathbf{F}^{(0)} \equiv \operatorname{fn}({}^{t} \mathbf{U})$$

$${}^{t+\Delta t} \mathbf{U}^{(1)} = {}^{t+\Delta t} \mathbf{U}^{(0)} + \Delta \mathbf{U}^{(1)}$$
(10.25)
(10.26)

$$i=2,$$

$${}^{t+\Delta t}\boldsymbol{K}^{(1)} \ \Delta \boldsymbol{U}^{(2)} = {}^{t+\Delta t}\boldsymbol{R} - {}^{t+\Delta t}\boldsymbol{F}^{(1)}$$
(10.27)
$${}^{t+\Delta t}\boldsymbol{U}^{(2)} = {}^{t+\Delta t}\boldsymbol{U}^{(1)} + \Delta \boldsymbol{U}^{(2)}$$
(10.28)

We stated that we use

The deformation gradient We use ${}^{t}x_{i} = {}^{0}x_{i} + {}^{t}u_{i}$

$${}_{0}^{t}\boldsymbol{X} = \begin{bmatrix} \frac{\partial^{t}x_{1}}{\partial^{0}x_{1}} & \frac{\partial^{t}x_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}x_{1}}{\partial^{0}x_{3}} \\ \frac{\partial^{t}x_{2}}{\partial^{0}x_{1}} & \frac{\partial^{t}x_{2}}{\partial^{0}x_{2}} & \frac{\partial^{t}x_{2}}{\partial^{0}x_{3}} \\ \frac{\partial^{t}x_{3}}{\partial^{0}x_{1}} & \frac{\partial^{t}x_{3}}{\partial^{0}x_{2}} & \frac{\partial^{t}x_{3}}{\partial^{0}x_{3}} \end{bmatrix}$$
(11.2)

$$d^{t}\boldsymbol{x} = \begin{bmatrix} d^{t}x_{1} \\ d^{t}x_{2} \\ d^{t}x_{3} \end{bmatrix}$$
(11.3)
$$d^{0}\boldsymbol{x} = \begin{bmatrix} d^{0}x_{1} \\ d^{0}x_{2} \end{bmatrix}$$
(11.4)

$$\boldsymbol{x} = \begin{bmatrix} d^0 x_1 \\ d^0 x_2 \\ d^0 x_3 \end{bmatrix}$$
(11.4)

Implies that

$$d^{t}\boldsymbol{x} = {}_{0}^{t}\boldsymbol{X}d^{0}\boldsymbol{x}$$
(11.5)

 $\begin{pmatrix} {}^t X & \text{is frequently denoted by } {}^t F & \text{or simply } F, \text{ but we use } F & \text{for} \end{pmatrix}$ force vector)

We will also use the right Cauchy-Green deformation tensor

$${}_{0}^{t}\boldsymbol{C} = {}_{0}^{t}\boldsymbol{X}{}_{0}^{T}{}_{0}^{t}\boldsymbol{X}$$

$$(11.6)$$

Some applications

dog dog x, α_1

The stretch of a fiber $({}^t\lambda)$:

$$\left({}^{t}\lambda\right)^{2} = \frac{d^{t}\boldsymbol{x}^{T}d^{t}\boldsymbol{x}}{d^{0}\boldsymbol{x}^{T}d^{0}\boldsymbol{x}} = \left(\frac{d^{t}s}{d^{0}s}\right)^{2}$$
(11.7)

The length of a fiber is

$$d^{0}s = \left(d^{0}\boldsymbol{x}^{T}d^{0}\boldsymbol{x}\right)^{\frac{1}{2}}$$
(11.8)

$$\left({}^{t}\lambda\right)^{2} = \frac{\left(d^{0}\boldsymbol{x}^{T}{}_{0}^{t}\boldsymbol{X}^{T}\right)\left({}^{t}_{0}\boldsymbol{X}d^{0}\boldsymbol{x}\right)}{d^{0}\boldsymbol{s}\cdot d^{0}\boldsymbol{s}}, \quad \text{from (11.5)}$$

$$(11.9)$$

Express

$$d^{0}\boldsymbol{x} = (d^{0}s)^{0}\boldsymbol{n}$$
(11.10)
$${}^{0}\boldsymbol{n} = \text{unit vector into direction of } d^{0}\boldsymbol{x}$$
(11.11)

$${}^{\circ}\boldsymbol{n} = \text{unit vector into direction of } d^{\circ}\boldsymbol{x}$$
 (11.11)

$$\Rightarrow \left({}^{t}\lambda\right)^{2} = {}^{0}\boldsymbol{n}{}^{T}{}^{t}_{0}\boldsymbol{C}{}^{0}\boldsymbol{n} \tag{11.12}$$

$$\therefore \boxed{{}^{t}\lambda = \left({}^{0}\boldsymbol{n}^{T}{}^{t}{}^{t}\boldsymbol{C}^{0}\boldsymbol{n}\right)^{\frac{1}{2}}}$$
(11.13)

Also,

$$(d^{t}\hat{\boldsymbol{x}})^{T} \cdot (d^{t}\boldsymbol{x}) = (d^{t}\hat{s}) (d^{t}s) \cos^{t}\theta, \qquad (\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos\theta)$$
(11.14)

From (11.5),

$$\cos^{t}\theta = \frac{\left(d^{0}\hat{\boldsymbol{x}}^{T} {}_{0}^{t}\hat{\boldsymbol{X}}^{T}\right)\left({}_{0}^{t}\boldsymbol{X} {} d^{0}\boldsymbol{x}\right)}{d^{t}\hat{\boldsymbol{s}} {}_{0}^{t}\boldsymbol{s}} \qquad \begin{pmatrix}{}_{0}^{t}\hat{\boldsymbol{X}} \equiv {}_{0}^{t}\boldsymbol{X}\end{pmatrix}$$
(11.15)

$$=\frac{d^{0}\hat{s}^{0}\hat{n}^{T}{}_{0}^{T}C^{0}n\,d^{0}s}{d^{t}\hat{s}\cdot d^{t}s}\tag{11.16}$$

$$\therefore \boxed{\cos^{t}\theta = \frac{{}^{0}\hat{\boldsymbol{n}}^{T}{}^{t}_{0}\boldsymbol{C}^{0}\boldsymbol{n}}{{}^{t}\hat{\boldsymbol{\lambda}}^{t}\boldsymbol{\lambda}}} \tag{11.17}$$

Also,

$${}^{t}\rho = \frac{{}^{0}\rho}{\det {}^{t}_{0}\boldsymbol{X}} \qquad (\text{see Ex. 6.5})$$
(11.18)

Example

Reading: Ex. 6.6 in the text

$$h_1 = \frac{1}{4} (1 + {}^0x_1)(1 + {}^0x_2)$$

$$\vdots$$
(11.19)

$${}^{t}x_{i} = {}^{0}x_{i} + {}^{t}u_{i} \tag{11.20}$$

$$=\sum_{k=1}^{4} h_k^{\ t} x_i^k, \quad (i=1,2)$$
(11.21)

where ${}^{t}x_{i}^{k}$ are the nodal point coordinates at time t (${}^{t}x_{1}^{1} = 2, \; {}^{t}x_{2}^{1} = 1.5$)

Then we obtain

$${}_{0}^{t}\boldsymbol{X} = \frac{1}{4} \begin{bmatrix} 5 + {}^{0}\boldsymbol{x}_{2} & 1 + {}^{0}\boldsymbol{x}_{1} \\ \frac{1}{2}(1 + {}^{0}\boldsymbol{x}_{2}) & \frac{1}{2}(9 + {}^{0}\boldsymbol{x}_{1}) \end{bmatrix}$$
(11.22)

At
$${}^{0}x_{1} = 0, \; {}^{0}x_{2} = 0,$$

 ${}^{t}_{0}X\Big|_{{}^{0}x_{i} = {}^{0}x_{2} = 0} = \frac{1}{4} \left[\begin{array}{cc} 5 & 1\\ \frac{1}{2} & \frac{9}{2} \end{array} \right]$
(11.23)

The Green-Lagrange Strain

$${}_{0}^{t}\epsilon = \frac{1}{2} \begin{pmatrix} {}_{0}^{t} \boldsymbol{X}^{T} {}_{0}^{t} \boldsymbol{X} - \boldsymbol{I} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} {}_{0}^{t} \boldsymbol{C} - \boldsymbol{I} \end{pmatrix}$$
(11.24)

$$\frac{\partial^t x_i}{\partial^0 x_j} = \frac{\partial \left({}^0 x_i + {}^t u_i \right)}{\partial^0 x_j} = \delta_{ij} + \frac{\partial^t u_i}{\partial^0 x_j} \tag{11.25}$$

We find that

$${}_{0}^{t}\epsilon_{ij} = \frac{1}{2} \left({}_{0}^{t}u_{i,j} + {}_{0}^{t}u_{j,i} + {}_{0}^{t}u_{k,i} {}_{0}^{t}u_{k,j} \right), \qquad \text{sum over } k = 1, 2, 3$$
(11.26)

where

$${}_{0}^{t}u_{i,j} = \frac{\partial^{t}u_{i}}{\partial^{0}x_{j}}$$

$$(11.27)$$

Polar decomposition of ${}^t_0 X$

$${}_{0}^{t}\boldsymbol{X} = {}_{0}^{t}\boldsymbol{R} {}_{0}^{t}\boldsymbol{U}$$
(11.28)

where ${}_{0}^{t}\boldsymbol{R}$ is a rotation matrix, such that

$${}_{0}^{t}\boldsymbol{R}^{T}{}_{0}^{t}\boldsymbol{R} = \boldsymbol{I}$$

$$(11.29)$$

and ${}_{0}^{t}\boldsymbol{U}$ is a symmetric matrix (stretch)

Ex. 6.9 textbook

Then,

$${}_{0}^{t}\boldsymbol{C} = {}_{0}^{t}\boldsymbol{X}^{T} {}_{0}^{t}\boldsymbol{X} = \left({}_{0}^{t}\boldsymbol{U}\right)^{2}$$

$$(11.31)$$

$${}_{0}^{t}\boldsymbol{\epsilon} = \frac{1}{2} \left[\begin{pmatrix} {}_{0}^{t}\boldsymbol{U} \end{pmatrix}^{2} - \boldsymbol{I} \right]$$
(11.32)

This shows, by an example, that the components of the Green-Lagrange strain are independent of a rigid-body rotation.

2.094 — Finite Element Analysis of Solids and Fluids	Fall '08
Lecture 12 - Total Lagrangian	n formulation
Prof. K.J. Bathe	MIT OpenCourseWare

We discussed:

$${}_{0}^{t}\boldsymbol{X} = \begin{bmatrix} \frac{\partial^{t}\boldsymbol{x}_{i}}{\partial^{0}\boldsymbol{x}_{j}} \end{bmatrix} \qquad \Rightarrow \quad d^{t}\boldsymbol{x} = {}_{0}^{t}\boldsymbol{X}d^{0}\boldsymbol{x}, \quad d^{0}\boldsymbol{x} = \left({}_{0}^{t}\boldsymbol{X}\right)^{-1}d^{t}\boldsymbol{x}$$
(12.1)

$${}_{0}^{t}\boldsymbol{C} = {}_{0}^{t}\boldsymbol{X}^{T}{}_{0}^{t}\boldsymbol{X}$$

$$(12.2)$$

$$d^{0}\boldsymbol{x} = {}^{0}_{t}\boldsymbol{X}d^{t}\boldsymbol{x} \qquad \text{where } {}^{0}_{t}\boldsymbol{X} = \left({}^{t}_{0}\boldsymbol{X}\right)^{-1} = \left[\frac{\partial^{0}x_{i}}{\partial^{t}x_{j}}\right]$$
(12.3)

The Green-Lagrange strain:

$${}_{0}^{t}\boldsymbol{\epsilon} = \frac{1}{2} \left({}_{0}^{t}\boldsymbol{X}^{T} {}_{0}^{t}\boldsymbol{X} - \boldsymbol{I} \right) = \frac{1}{2} \left({}_{0}^{t}\boldsymbol{C} - \boldsymbol{I} \right)$$
(12.4)

Polar decomposition:

$${}_{0}^{t}\boldsymbol{X} = {}_{0}^{t}\boldsymbol{R}_{0}^{t}\boldsymbol{U} \Rightarrow {}_{0}^{t}\boldsymbol{\epsilon} = \frac{1}{2}\left(\left({}_{0}^{t}\boldsymbol{U}\right)^{2} - \boldsymbol{I}\right)$$
(12.5)

We see, physically that:

where $d^{t+\Delta t} \boldsymbol{x}$ and $d^t \boldsymbol{x}$ are the same lengths \Rightarrow the components of the G-L strain do not change.

Note in FEA

 ${}^{t}x_{i} = {}^{0}x_{i} + {}^{t}u_{i} \to \quad \text{for any particle}$ (12.7)

Hence for the element

$${}^{t}x_{i} = \sum_{k} h_{k}{}^{0}x_{i}^{k} + \sum_{k} h_{k}{}^{t}u_{i}^{k}$$
(12.8)

$$=\sum_{k}h_k\left({}^0x_i^k+{}^tu_i^k\right) \tag{12.9}$$

$$=\sum_{k}^{n} h_k {}^t x_k^k \tag{12.10}$$

E.g., k = 4

2nd Piola-Kirchhoff stress

$${}_{0}^{t}\boldsymbol{S} = \frac{{}_{0}^{0}\rho}{{}_{t}\rho}{}_{t}^{0}\boldsymbol{X}^{t}\boldsymbol{\tau}_{t}^{0}\boldsymbol{X}^{T} \rightarrow \text{ components also independent of a rigid body rotation}$$
(12.11)

Then

$$\int_{{}^{0}V} {}^{t}S_{ij} \,\delta^{t}_{0} \epsilon_{ij} \,d^{0}V = \int_{{}^{t}V} {}^{t}\tau_{ij} \,\delta_{t} e_{ij} \,d^{t}V = {}^{t}\mathcal{R}$$

$$(12.12)$$

We can use an incremental decomposition of stress/strain.

$${}^{t+\Delta t}_{0}\boldsymbol{S} = {}^{t}_{0}\boldsymbol{S} + {}_{0}\boldsymbol{S} \tag{12.13}$$

$${}^{t+\Delta t}_{0}S_{ij} = {}^{t}_{0}S_{ij} + {}_{0}S_{ij}$$
(12.14)

$${}^{t+\Delta t}_{0}\boldsymbol{\epsilon} = {}^{t}_{0}\boldsymbol{\epsilon} + {}_{0}\boldsymbol{\epsilon}$$

$$(12.15)$$

$${}^{t+\Delta t}_{0}\epsilon_{ij} = {}^{t}_{0}\epsilon_{ij} + {}_{0}\epsilon_{ij} \tag{12.16}$$

Assume the solution is kown at time t, calculate the solution at time $t + \Delta t$. Hence, we apply (12.12) at time $t + \Delta t$:

$$\int_{0_V} {}^{t+\Delta t}_0 S_{ij} \,\delta^{t+\Delta t}_{0} \epsilon_{ij} \,d^0 V = {}^{t+\Delta t} \mathcal{R}$$
(12.17)

Look at $\delta_0^t \epsilon_{ij}$:

$$\delta_0^t \epsilon_{ij} = \delta_2^1 \left({}_0^t u_{i,j} + {}_0^t u_{j,i} + {}_0^t u_{k,i} {}_0^t u_{k,j} \right)$$
(12.18a)

$$\delta_0^t \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial \delta u_i}{\partial^0 x_j} + \frac{\partial \delta u_j}{\partial^0 x_i} + \frac{\partial \delta u_k}{\partial^0 x_i} \cdot \frac{\partial^t u_k}{\partial^0 x_j} + \frac{\partial^t u_k}{\partial^0 x_j} \cdot \frac{\partial \delta u_k}{\partial^0 x_j} \right)$$
(12.18b)

$$\delta_0^t \epsilon_{ij} = \frac{1}{2} \left(\delta_0 u_{i,j} + \delta_0 u_{j,i} + \delta_0 u_{k,i} \frac{t}{0} u_{k,j} + \frac{t}{0} u_{k,i} \delta_0 u_{k,j} \right)$$
(12.18c)

We have

$${}^{t+\Delta t}_{0}\epsilon_{ij} - {}^{t}_{0}\epsilon_{ij} = {}_{0}\epsilon_{ij} \tag{12.19}$$

$${}_{0}\epsilon_{ij} = {}_{0}e_{ij} + {}_{0}\eta_{ij} \tag{12.20}$$

where $_{0}e_{ij}$ is the linear incremental strain, $_{0}\eta_{ij}$ is the nonlinear incremental strain, and

$${}_{0}e_{ij} = \frac{1}{2} \left({}_{0}u_{i,j} + {}_{0}u_{j,i} + \underbrace{ \underbrace{ }_{0}^{t}u_{k,i0}u_{k,j} + {}_{0}u_{k,i0} \underbrace{ u_{k,j}}_{\text{initial displ. effect}} \right)$$
(12.21)
$${}_{0}\eta_{ij} = \frac{1}{2} {}_{0}u_{k,i0}u_{k,j}$$
(12.22)

where

$${}_{0}u_{k,j} = \frac{\partial u_k}{\partial {}^{0}x_j}, \qquad \boxed{u_k = {}^{t+\Delta t}u_k - {}^{t}u_k}$$
(12.23)

Note

$$\delta^{t+\Delta t}\epsilon_{ij} = \delta_0\epsilon_{ij} \qquad \left(\because \delta_0^t\epsilon_{ij} = 0 \text{ when changing the configuration at } t + \Delta t\right)$$
(12.24)

From (12.17):

$$\int_{0V} \left({}_{0}^{t}S_{ij} + {}_{0}S_{ij} \right) \left(\delta_{0}e_{ij} + \delta_{0}\eta_{ij} \right) d^{0}V$$

$$= \int_{0V} \left({}_{0}^{t}S_{ij}\delta_{0}e_{ij} + {}_{0}S_{ij}\delta_{0}e_{ij} + {}_{0}^{t}S_{ij}\delta_{0}\eta_{ij} + {}_{0}S_{ij}\delta_{0}\eta_{ij} \right) d^{0}V \qquad (12.25)$$

$$= {}^{t+\Delta t}\mathcal{R} \qquad (12.26)$$

Linearization

$$\int_{0V} \left(\underbrace{\underbrace{O}_{0}^{t} K_{L} U}_{0} \underbrace{O}_{ij} \delta_{0} e_{ij}}_{0} + \underbrace{O}_{0}^{t} S_{ij} \delta_{0} \eta_{ij}}_{0} \right) d^{0} V = t + \Delta t \mathcal{R} - \underbrace{\int_{0V}}_{0V} \underbrace{O}_{0}^{t} S_{ij} \delta_{0} e_{ij} d^{0} V}_{0}$$
(12.27)

We use,

$${}_{0}S_{ij} \simeq {}_{0}C_{ijrs0}e_{rs}$$
 (12.28)

We arrive at, with the finite element interpolations,

$$\begin{pmatrix} {}^{t}\boldsymbol{K}_{L} + {}^{t}_{0}\boldsymbol{K}_{NL} \end{pmatrix} \boldsymbol{U} = {}^{t+\Delta t}\boldsymbol{R} - {}^{t}_{0}\boldsymbol{F}$$
(12.29)

where \boldsymbol{U} is the nodal displacement increment.

Left hand side as before but using (k-1) and right hand side is

$$= {}^{t+\Delta t}\mathcal{R} - \int_{{}^{0}V} {}^{t+\Delta t}_{0} S_{ij} \delta^{t+\Delta t}_{0} \epsilon^{(k-1)}_{ij} d^{0}V$$

$$(12.30)$$

gives

$$^{t+\Delta t}\boldsymbol{R} - {}^{t+\Delta t}_{0}\boldsymbol{F}^{(k-1)}$$
(12.31)

In the full N-R iteration, we use

$$\begin{pmatrix} t+\Delta t \\ 0 \mathbf{K}_{L}^{(k-1)} + \frac{t+\Delta t}{0} \mathbf{K}_{NL}^{(k-1)} \end{pmatrix} \Delta \mathbf{U}^{(k)} = t+\Delta t \mathbf{R} - \frac{t+\Delta t}{0} \mathbf{F}^{(k-1)}$$
(12.32)

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 13 - Total Lagrangian formulation, cont'd MIT OpenCourseWare Prof. K.J. Bathe MIT OpenCourseWare

Example truss element. Recall:

Principle of virtual displacements applied at some time $t + \Delta t$:

$$\int_{t+\Delta t_V} {}^{t+\Delta t} \tau_{ij} \delta_{t+\Delta t} e_{ij} d^{t+\Delta t} V = {}^{t+\Delta t} \mathcal{R}$$
(13.1)

$$\int_{{}^{0}V} {}^{t+\Delta t}_{0} S_{ij} \delta^{t+\Delta t}_{0} \epsilon_{ij} \delta^{0} V = {}^{t+\Delta t} \mathcal{R}$$
(13.2)

$${}^{t+\Delta t}_{0}S_{ij} = {}^{t}_{0}S_{ij} + {}_{0}S_{ij}$$

$${}^{t+\Delta t}_{0} = {}^{t}_{0} + {}_{0}S_{ij}$$

$$(13.3)$$

$$(13.4)$$

$${}^{+\Delta t}_{0}\epsilon_{ij} = {}^{t}_{0}\epsilon_{ij} + {}_{0}\epsilon_{ij}$$

$$(13.4)$$

$${}_0\epsilon_{ij} = {}_0e_{ij} + {}_0\eta_{ij} \tag{13.5}$$

where ${}^t_0S_{ij}$ and ${}^t_0\epsilon_{ij}$ are known, but ${}_0S_{ij}$ and ${}_0\epsilon_{ij}$ are not.

$${}_{0}e_{ij} = \frac{1}{2} \left({}_{0}u_{i,j} + {}_{0}u_{j,i} + {}_{0}^{t}u_{k,i0}u_{k,j} + {}_{0}^{t}u_{k,j0}u_{k,i} \right)$$
(13.6)

$${}_{0}\eta_{ij} = \frac{1}{2} \left({}_{0}u_{k,i0}u_{k,j} \right) \tag{13.7}$$

Substitute into (13.2) and linearize to obtain

$$\int_{{}^{0}V} \delta_0 e_{ij0} C_{ijrs0} e_{rs} d^0 V + \int_{{}^{0}V} {}^{t}_0 S_{ij} \delta_0 \eta_{ij} d^0 V = {}^{t+\Delta t} \mathcal{R} - \int_{{}^{0}V} \delta_0 e_{ij0} {}^{t}_0 S_{ij} d^0 V$$
(13.8)

F.E. discretization gives

$$\begin{pmatrix} {}^{t}_{0}\boldsymbol{K}_{L} + {}^{t}_{0}\boldsymbol{K}_{NL} \end{pmatrix} \Delta \boldsymbol{U} = {}^{t+\Delta t}\boldsymbol{R} - {}^{t}_{0}\boldsymbol{F}$$
(13.9)

$${}_{0}^{t}\boldsymbol{K}_{L} = \int_{0V} {}_{0}^{t}\boldsymbol{B}_{L}^{T} {}_{0}\boldsymbol{C}_{0}^{t}\boldsymbol{B}_{L} d^{0}V$$
(13.10)

$${}_{0}^{t}\boldsymbol{K}_{NL} = \int_{0V} {}_{0}^{t}\boldsymbol{B}_{NL}^{T} \underbrace{{}_{0}^{t}\boldsymbol{S}}_{\text{matrix}} {}_{0}^{t}\boldsymbol{B}_{NL} d^{0}V$$
(13.11)

$${}_{0}^{t}\boldsymbol{F} = \int_{0_{V}} {}_{0}^{t}\boldsymbol{B}_{L}^{T} \underbrace{\stackrel{t}{\underbrace{0}}\hat{\boldsymbol{S}}}_{\text{vector}} d^{0}V$$
(13.12)

The iteration (full Newton-Raphson) is

$$\begin{pmatrix} t+\Delta t\\ 0 \mathbf{K}_{L}^{(i-1)} + t+\Delta t\\ 0 \mathbf{K}_{NL}^{(i-1)} \end{pmatrix} \Delta \mathbf{U}^{(i)} = t+\Delta t \mathbf{R} - t+\Delta t\\ 0 \mathbf{R} - t+\Delta t \mathbf{R} - t+\Delta t\\ 0 \mathbf{R} - t+\Delta t \mathbf{R} - t+\Delta t \mathbf{R} - t \mathbf{R$$

$${}^{t+\Delta t}\boldsymbol{U}^{(i)} = {}^{t+\Delta t}\boldsymbol{U}^{(i-1)} + \Delta \boldsymbol{U}^{(i)}$$
(13.14)

Truss element example (p. 545)

Here we have to only deal with ${}^t_0S_{11},\;{}_0e_{11},\;{}_0\eta_{11}$

 ${}_{0}e_{11} = \frac{\partial u_{1}}{\partial^{0}x_{1}} + \frac{\partial^{t}u_{k}}{\partial^{0}x_{1}} \cdot \frac{\partial u_{k}}{\partial^{0}x_{1}}$ (13.15) ${}_{0}\eta_{11} = \frac{1}{2} \left(\frac{\partial u_{k}}{\partial^{0}x_{1}} \cdot \frac{\partial u_{k}}{\partial^{0}x_{1}} \right)$ (13.16)

We are after

$${}_{0}e_{11} = {}_{0}^{t}\boldsymbol{B}_{L} \begin{pmatrix} u_{1}^{1} \\ u_{2}^{1} \\ u_{1}^{2} \\ u_{2}^{2} \end{pmatrix} = {}_{0}^{t}\boldsymbol{B}_{L} \hat{\boldsymbol{u}}$$
(13.17)

$$u_i = \sum_{k=1}^2 h_k u_i^k \tag{13.18}$$

$${}^{t}u_{i} = \sum_{k=1}^{2} h_{k}{}^{t}u_{i}^{k} \tag{13.19}$$

$$_{0}e_{11} = \frac{\partial u_{1}}{\partial^{0}x_{1}} + \frac{\partial^{t}u_{1}}{\partial^{0}x_{1}}\frac{\partial u_{1}}{\partial^{0}x_{1}} + \frac{\partial^{t}u_{2}}{\partial^{0}x_{1}}\frac{\partial u_{2}}{\partial^{0}x_{1}}$$
(13.20a)

$${}^{t}u_{1}^{2} = ({}^{0}L + \Delta L)\cos\theta - {}^{0}L$$

$${}^{t}u_{2}^{2} = ({}^{0}L + \Delta L)\sin\theta$$
(13.20b)
(13.20c)

$${}_{0}e_{11} = \frac{1}{0L} \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix} \hat{u} \\ + \left(\underbrace{\frac{0L + \Delta L}{0L} \cos \theta - 1}_{\frac{\partial^{t} u_{1}}{\partial 0 x_{1}}} \right) \cdot \frac{1}{0L} \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix} \hat{u} \\ + \left(\underbrace{\frac{0L + \Delta L}{0L} \sin \theta}_{\frac{\partial^{t} u_{2}}{\partial 0 x_{1}}} \right) \cdot \frac{1}{0L} \begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix} \hat{u}$$
(13.20d)

$$=_{0}^{t} \boldsymbol{B}_{L} \hat{\boldsymbol{u}}$$
(13.20e)

Hence,

$${}_{0}e_{11} = \boxed{\frac{{}^{0}L + \Delta L}{\left({}^{0}L\right)^{2}} \left[\begin{array}{ccc} -\cos\theta & -\sin\theta & \cos\theta & \sin\theta \end{array} \right]} \hat{\boldsymbol{u}}$$
(13.20f)

where the boxed quantity above equals ${}_0^t \pmb{B}_L.$ In small strain but large rotation analysis we assume $\Delta L \ll {}^0L,$

$${}_{0}e_{11} = \frac{1}{{}^{0}L} \left[-\cos\theta - \sin\theta \cos\theta \sin\theta \right] \hat{\boldsymbol{u}}$$
(13.20g)

$$_{0}\eta_{11} = \frac{1}{2} \left(\frac{\partial u_{1}}{\partial^{0} x_{1}} \frac{\partial u_{1}}{\partial^{0} x_{1}} + \frac{\partial u_{2}}{\partial^{0} x_{1}} \frac{\partial u_{2}}{\partial^{0} x_{1}} \right)$$
(13.21a)

$$\delta_0 \eta_{11} = \frac{1}{2} \left(\frac{\partial \delta u_1}{\partial^0 x_1} \frac{\partial u_1}{\partial^0 x_1} + \frac{\partial u_1}{\partial^0 x_1} \frac{\partial \delta u_1}{\partial^0 x_1} + \frac{\partial \delta u_2}{\partial^0 x_1} \frac{\partial u_2}{\partial^0 x_1} + \frac{\partial u_2}{\partial^0 x_1} \frac{\partial \delta u_2}{\partial^0 x_1} \right)$$
(13.21b)

$$= \left(\frac{\partial \delta u_1}{\partial^0 x_1} \frac{\partial u_1}{\partial^0 x_1} + \frac{\partial \delta u_2}{\partial^0 x_1} \frac{\partial u_2}{\partial^0 x_1}\right)$$
(13.21c)

$${}_{0}^{t}S_{11}\delta_{0}\eta_{11} = \begin{bmatrix} \frac{\partial\delta u_{1}}{\partial^{0}x_{1}} & \frac{\partial\delta u_{2}}{\partial^{0}x_{1}} \end{bmatrix} \underbrace{\begin{pmatrix} {}_{0}^{t}S_{11} & 0 \\ 0 & {}_{0}^{t}S_{11} \end{pmatrix}}_{{}_{0}^{t}S} \begin{pmatrix} \frac{\partial u_{1}}{\partial^{0}x_{1}} \\ \frac{\partial u_{2}}{\partial^{0}x_{1}} \end{pmatrix}$$
(13.21d)

$$\begin{pmatrix} \frac{\partial u_1}{\partial \hat{\sigma}_{x_1}}\\ \frac{\partial u_2}{\partial \hat{\sigma}_{x_1}} \end{pmatrix} = \underbrace{\frac{1}{0L} \begin{bmatrix} -1 & 0 & 1 & 0\\ 0 & -1 & 0 & 1 \end{bmatrix}}_{B_{NL}} \hat{\boldsymbol{u}}$$
(13.21e)

$$_{0}\boldsymbol{C} = \boldsymbol{E} \tag{13.22}$$

$${}_{0}^{t}\hat{\boldsymbol{S}} = {}_{0}^{t}S_{11} \tag{13.23}$$

Assume small strains

$${}_{0}^{t}\boldsymbol{K} = \frac{EA}{0L}$$

$$= \underbrace{\begin{bmatrix} \cos^{2}\theta & \cos\theta\sin\theta & -\cos^{2}\theta & -\cos\theta\sin\theta \\ \sin^{2}\theta & -\sin\theta\cos\theta & -\sin^{2}\theta \\ gym & \sin^{2}\theta \end{bmatrix}}_{i^{t}\boldsymbol{K}_{L}}$$

$$+ \underbrace{{}_{0}^{t}\boldsymbol{P}}_{0L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}}_{i^{t}\boldsymbol{K}_{NL}}$$

$$(13.24)$$

When $\theta = 0$, ${}_{0}^{t} \boldsymbol{K}_{L}$ doesn't give stiffness corresponding to u_{2}^{2} , but ${}_{0}^{t} \boldsymbol{K}_{NL}$ does.

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 14 - Total Lagrangian formulation, cont'd MIT OpenCourseWare Prof. K.J. Bathe MIT OpenCourseWare

Truss element. 2D and 3D solids.

$$\int_{t+\Delta t_V} {}^{t+\Delta t} \tau_{ij} \delta_{t+\Delta t} e_{ij} d^{t+\Delta t} V = {}^{t+\Delta t} \mathcal{R}$$
(14.1)

$$\int_{0V} {}^{t+\Delta t} S_{ij} \delta^{t+\Delta t} {}^{\bullet}_{0} \epsilon_{ij} \delta^{0} V = {}^{t+\Delta t} \mathcal{R}$$
(14.2)

$$\int_{{}^{0}V} {}^{0}C_{ijrs\,0}e_{rs}\delta_{0}e_{ij}\delta^{0}V + \int_{{}^{0}V} {}^{t}S_{ij}\delta_{0}\eta_{ij}\delta^{0}V = {}^{t+\Delta t}\mathcal{R} - \int_{{}^{0}V} {}^{t}S_{ij}\delta_{0}e_{ij}\delta^{0}V$$
(14.3)

Note:

$$\delta_0 e_{ij} = \delta_0^{t} \epsilon_{ij}$$

varying with respect to the configuration at time t.

F.E. discretization

$${}^{0}x_{i} = \sum_{k} h_{k}{}^{0}x_{i}^{k} \qquad {}^{t}x_{i} = \sum_{k} h_{k}{}^{t}x_{i}^{k} \qquad {}^{t+\Delta t}x_{i} = \sum_{k} h_{k}{}^{t+\Delta t}x_{i}^{k} \qquad (14.4a)$$

$${}^{t}u_{i} = \sum_{k}^{n} h_{k}{}^{t}u_{i}^{k} \qquad {}^{t+\Delta t}u_{i} = \sum_{k}^{n} h_{k}{}^{t+\Delta t}u_{i}^{k} \qquad u_{i} = \sum_{k}^{n} h_{k}u_{i}^{k} \qquad (14.4b)$$

(14.4) into (14.3) gives

$$\begin{pmatrix} {}^{t}_{0}\boldsymbol{K}_{L} + {}^{t}_{0}\boldsymbol{K}_{NL} \end{pmatrix} \boldsymbol{U} = {}^{t+\Delta t}\boldsymbol{R} - {}^{t}_{0}\boldsymbol{F}$$
(14.5)

Truss

 $\frac{\Delta L}{^0L} \ll 1$ small strain assumption:

$${}_{0}^{t}\boldsymbol{K} = \frac{E^{0}A}{^{0}L}$$

$$= \begin{bmatrix} \cos^{2}\theta & \cos\theta\sin\theta & -\cos^{2}\theta & -\cos\theta\sin\theta\\ \cos\theta\sin\theta & \sin^{2}\theta & -\sin\theta\cos\theta & -\sin^{2}\theta\\ -\cos^{2}\theta & -\cos\theta\sin\theta & \cos^{2}\theta & \sin\theta\cos\theta\\ -\cos\theta\sin\theta & -\sin^{2}\theta & \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}$$

$$+ \frac{^{t}P}{^{0}L} \begin{bmatrix} 1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1\\ -1 & 0 & 1 & 0\\ 0 & -1 & 0 & 1 \end{bmatrix}$$
(14.6)

(notice that the both matrices are symmetric)

$$\begin{pmatrix} \overline{u}_1 \\ \overline{v}_1 \end{pmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{pmatrix} u_1 \\ v_1 \end{pmatrix}$$
(14.7)

Corresponding to the \overline{u} and \overline{v} displacements we have:

$${}_{0}^{t}\boldsymbol{K} = \frac{E^{0}A}{{}_{0}L} \tag{14.8}$$

$$= \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$
(14.9)

$$Q^{0}L = {}^{t}P \cdot \Delta \qquad \Rightarrow \qquad Q = \left\lfloor \frac{{}^{t}P}{{}^{0}L} \right\rfloor \cdot \Delta$$
(14.10)

where the boxed term is the stiffness. In axial direction, $\frac{{}^{t}P}{{}^{0}L}$ is not very important because usually $\frac{E^{0}A}{{}^{0}L} \gg \frac{{}^{t}P}{{}^{0}L}$. But, in vertical direction, $\frac{{}^{t}P}{{}^{0}L}$ is important.

$${}_{0}{}^{t}\boldsymbol{F} = {}^{t}\boldsymbol{P} \begin{bmatrix} -\cos\theta \\ -\sin\theta \\ \cos\theta \\ \sin\theta \end{bmatrix}$$
(14.11)

2D/3D (e.g. Table 6.5) 2D:

$${}_{0}\epsilon_{11} = \underbrace{{}_{0}u_{1,1} + {}^{t}_{0}u_{1,10}u_{1,1} + {}^{t}_{0}u_{2,10}u_{2,1}}_{{}_{0}e_{11}} + \frac{1}{2}\underbrace{\left[\left({}_{0}u_{1,1}\right)^{2} + \left({}_{0}u_{2,1}\right)^{2}\right]}_{{}_{0}\eta_{11}}$$
(14.12)

$$_{0}\epsilon_{22} = \cdots \tag{14.13}$$

$$_{0}\epsilon_{12} = \cdots \tag{14.14}$$

(Axisymmetric)

Ĉ

 $\hat{\boldsymbol{z}}_3$

$$_{0}\epsilon_{33} = ?$$
 (14.15)

$${}_{0}^{t}\boldsymbol{U}^{2} = \begin{bmatrix} \begin{pmatrix} \ddots & \ddots & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{bmatrix} \\ & \uparrow \\ & (^{t}\lambda)^{2} \end{bmatrix}$$
(14.17)

$${}^{t}\lambda = \frac{d^{t}s}{d^{0}s} = \frac{2\pi \left({}^{0}x_{1} + {}^{t}u_{1}\right)}{2\pi^{0}x_{1}}$$

$$= 1 + \frac{{}^{t}u_{1}}{{}^{0}x_{1}}$$
(14.18)

$${}^{t+\Delta t}_{0}\epsilon_{33} = \frac{{}^{t}u_1 + u_1}{{}^{0}x_1} + \frac{1}{2}\left(\frac{{}^{t}u_1 + u_1}{{}^{0}x_1}\right)^2 \tag{14.20}$$

$${}_{0}\epsilon_{33} = {}^{t+\Delta t}{}_{0}\epsilon_{33} - {}^{t}_{0}\epsilon_{33} = \frac{u_{1}}{{}^{0}x_{1}} + \frac{{}^{t}u_{1}}{{}^{0}x_{1}} \cdot \frac{u_{1}}{{}^{0}x_{1}} + \frac{1}{2}\left(\frac{u_{1}}{{}^{0}x_{1}}\right)^{2}$$
(14.21)

How do we assess the accuracy of an analysis?

Reading: Sec. 4.3.6

- Mathematical model $\sim u$
- F.E. solution $\sim u_h$

Find $\|\boldsymbol{u} - \boldsymbol{u}_h\|$ and $\|\boldsymbol{\tau} - \boldsymbol{\tau}_h\|$.

References

- T. Sussman and K. J. Bathe. "Studies of Finite Element Procedures on Mesh Selection." Computers & Structures, 21:257–264, 1985.
- [2] T. Sussman and K. J. Bathe. "Studies of Finite Element Procedures Stress Band Plots and the Evaluation of Finite Element Meshes." *Journal of Engineering Computations*, 3:178–191, 1986.

2.094 — Finite Element Analysis of Solids and Fluids Lecture 15 - Field problems

Prof. K.J. Bathe

Heat transfer, incompressible/inviscid/irrotational flow, seepage flow, etc.

- Differential formulation
- Variational formulation
- Incremental formulation
- F.E. discretization

15.1 Heat transfer

Assume V constant for now:

$$S = S_{\theta} \cup S_q$$

 $\theta(x,y,z,t)$ is unkown except $\theta|_{S_{\theta}}=\theta_{pr}.$ In addition, $\left.q^{s}\right|_{S_{q}}$ is also prescribed.

15.1.1 Differential formulation

- I. Heat flow equilibrium in V and on S_q .
- II. Constitutive laws $q_x = -k \frac{\partial \theta}{\partial x}$.

$$q_y = -k \frac{\partial \theta}{\partial y}$$
(15.1)
$$q_z = -k \frac{\partial \theta}{\partial z}$$
(15.2)

III. Compatibility: temperatures need to be continuous and satisfy the boundary conditions.

MIT OpenCourseWare

Fall '08

Reading: Sec. 7.2-7.3 Heat flow equilibrium gives

$$\frac{\partial}{\partial x}\left(k\frac{\partial\theta}{\partial x}\right) + \frac{\partial}{\partial y}\left(k\frac{\partial\theta}{\partial y}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial\theta}{\partial z}\right) = -q^B \tag{15.3}$$

where q^B is the heat generated per unit volume. Recall 1D case:

unit cross-section

$$dV = dx \cdot (1) \tag{15.4}$$

$$q|_x - q|_{x+dx} + q^B dx = 0 aga{15.5}$$

$$q|_{x} - \left(q|_{x} + \frac{\partial q_{x}}{\partial x}dx\right) + q^{B}dx = 0$$
(15.6)

$$-\frac{\partial}{\partial x}\left(-k\frac{\partial\theta}{\partial x}\right)dx + q^{B}dx = 0$$
(15.7)

$$\frac{\partial}{\partial x} \left(k \frac{\partial \theta}{\partial x} \right) = -q^B \tag{15.8}$$

We also need to satisfy

$$k\frac{\partial\theta}{\partial n} = q^S \tag{15.9}$$

on S_q .

15.1.2 Principle of virtual temperatures

$$\overline{\theta}\left(\frac{\partial}{\partial x}\left(k\frac{\partial\theta}{\partial x}\right) + \dots + q^B\right) = 0 \tag{15.10}$$

 $\left.\left(\left.\overline{\theta}\right|\right|_{S_{\theta}}=0 \text{ and } \overline{\theta} \text{ to be continuous.}\right)$

$$\int_{V} \overline{\theta} \left(\frac{\partial}{\partial x} \left(k \frac{\partial \theta}{\partial x} \right) + \dots + q^{B} \right) dV = 0$$
(15.11)

Transform using divergence theorem (see Ex 4.2, 7.1)

$$\int_{V} \overline{\theta}'^{T} \underbrace{\boldsymbol{k}\theta'}_{\text{heat flow}} dV = \int_{V} \overline{\theta} q^{B} dV + \int_{S_{q}} \overline{\theta}^{S_{q}} q^{S} dS_{q}$$
(15.12)

$$\boldsymbol{\theta}' = \begin{pmatrix} \frac{\partial \theta}{\partial x} \\ \frac{\partial \theta}{\partial y} \\ \frac{\partial \theta}{\partial z} \end{pmatrix}$$
(15.13)

$$\boldsymbol{k} = \begin{bmatrix} k & 0 & 0\\ 0 & k & 0\\ 0 & 0 & k \end{bmatrix}$$
(15.14)

Convection boundary condition

$$q^S = h\left(\theta^e - \theta^S\right) \tag{15.15}$$

where θ^e is the given environmental temperature.

Radiation

$$q^{S} = \kappa^{*} \left[\left(\theta^{r}\right)^{4} - \left(\theta^{S}\right)^{4} \right]$$
(15.16)

$$= \kappa^* \left[\left(\theta^r\right)^2 + \left(\theta^S\right)^2 \right] \left(\theta^r + \theta^S\right) \left(\theta^r - \theta^S\right)$$
(15.17)

$$=\kappa\left(\theta^r - \theta^S\right) \tag{15.18}$$

where $\kappa = \kappa(\theta^S)$ and θ^r is given temperature of source. At time $t + \Delta t$

$$\int_{V} \overline{\boldsymbol{\theta}'}^{T}{}^{t+\Delta t} \boldsymbol{k}^{t+\Delta t} \boldsymbol{\theta}' dV = \int_{V} \overline{\boldsymbol{\theta}}^{t+\Delta t} q^{B} dV + \int_{S_{q}} \overline{\boldsymbol{\theta}}^{S}{}^{t+\Delta t} q^{S} dS_{q}$$
(15.19)

Let
$$t + \Delta t \theta = t \theta + \theta$$
 (15.20)

or
$$t + \Delta t \theta^{(i)} = t + \Delta t \theta^{(i-1)} + \Delta \theta^{(i)}$$
 (15.21)

with
$$t + \Delta t \theta^{(0)} = t \theta$$
 (15.22)

From (15.19)

$$\int_{V} \overline{\boldsymbol{\theta}}^{T} t^{t+\Delta t} \boldsymbol{k}^{(i-1)} \Delta \boldsymbol{\theta}^{\prime(i)} dV
= \int_{V} \overline{\boldsymbol{\theta}}^{t+\Delta t} q^{B} dV - \int_{V} \overline{\boldsymbol{\theta}}^{T} t^{t+\Delta t} \boldsymbol{k}^{(i-1)t+\Delta t} \boldsymbol{\theta}^{\prime(i-1)} dV
+ \int_{S_{q}} \left[\overline{\boldsymbol{\theta}}^{S} t^{t+\Delta t} h^{(i-1)} \right] \left(t^{t+\Delta t} \boldsymbol{\theta}^{e} - \left(t^{t+\Delta t} \boldsymbol{\theta}^{S^{(i-1)}} + \Delta \boldsymbol{\theta}^{S^{(i)}} \right) \right) dS_{q}$$
(15.23)

where the $\Delta \theta^{S^{(i)}}$ term would be moved to the left-hand side.

We considered the convection conditions

$$\int_{S_q} \overline{\theta}^{S_{t+\Delta t}} h\left({}^{t+\Delta t} \theta^e - {}^{t+\Delta t} \theta^S\right) dS_q \tag{15.24}$$

The radiation conditions would be included similarly.

Reading:

F.E. discretization

$$^{t+\Delta t}\theta = \boldsymbol{H}_{1x4} \cdot {}^{t+\Delta t}\hat{\boldsymbol{\theta}}_{4x1} \quad \text{for 4-node 2D planar element}$$
(15.25)

$${}^{t+\Delta t}\boldsymbol{\theta}_{2\mathbf{x}1}' = \boldsymbol{B}_{2\mathbf{x}4} \cdot {}^{t+\Delta t}\hat{\boldsymbol{\theta}}_{4\mathbf{x}1}$$

$${}^{t+\Delta t}\boldsymbol{\theta}^{S} = \boldsymbol{H}^{S} \cdot {}^{t+\Delta t}\hat{\boldsymbol{\theta}}$$

$${}^{(15.26)}$$

$${}^{(15.27)}$$

For (15.23)

$$\int_{V} \overline{\boldsymbol{\theta}'}^{T} t + \Delta t \boldsymbol{k}^{(i-1)} \Delta {\boldsymbol{\theta}'}^{(i)} dV \stackrel{\text{gives}}{\Longrightarrow} \left(\int_{V} \underbrace{\boldsymbol{B}^{T}}_{4\mathbf{x}2} \underbrace{t + \Delta t \boldsymbol{k}^{(i-1)}}_{2\mathbf{x}2} \underbrace{\boldsymbol{B}}_{2\mathbf{x}4} dV \right) \Delta \underbrace{\hat{\boldsymbol{\theta}}^{(i)}}_{4\mathbf{x}1}$$
(15.28)

$$\int_{V} \overline{\theta}^{t+\Delta t} q^{B} dV \Rightarrow \int_{V} \boldsymbol{H}^{T\,t+\Delta t} q^{B} dV$$
(15.29)

$$\int_{V} \overline{\boldsymbol{\theta}'}^{T} {}^{t+\Delta t} \boldsymbol{k}^{(i-1)t+\Delta t} \boldsymbol{\theta'}^{(i-1)} dV \Rightarrow \left(\int_{V} \boldsymbol{B}^{Tt+\Delta t} \boldsymbol{k}^{(i-1)} \boldsymbol{B} dV \right) \underbrace{\underbrace{t+\Delta t} \hat{\boldsymbol{\theta}}^{(i-1)}}_{\text{known}}$$
(15.30)

$$\int_{S_q} \overline{\theta}^{S^T t + \Delta t} h^{(i-1)} \left({}^{t + \Delta t} \theta^e - \left({}^{t + \Delta t} \theta^{S^{(i-1)}} + \Delta \theta^{S^{(i)}} \right) \right) dS_q \implies \int_{S_q} \underbrace{\mathcal{H}^{S^T}}_{4x1} {}^{t + \Delta t} h^{(i-1)} \underbrace{\mathcal{H}^S}_{1x4} \left(\underbrace{ {}^{t + \Delta t} \hat{\theta}^e}_{4x1} - \left(\underbrace{ {}^{t + \Delta t} \hat{\theta}^{(i-1)}}_{4x1} + \Delta \underbrace{ \hat{\theta}^{(i)}}_{4x1} \right) \right) dS_q \implies (15.31)$$

15.2 Inviscid, incompressible, irrotational flow

2D case: v_x , v_y are velocities in x and y directions.

Sec. 7.3.2
$$\nabla \cdot \boldsymbol{v} = 0$$
 (15.32)

or
$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$
 (incompressible) (15.33)
 $\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial x} = 0$ (irrotational) (15.34)

Use the potential $\phi(x, y)$,

$$v_x = \frac{\partial \phi}{\partial x} \qquad v_y = \frac{\partial \phi}{\partial y}$$
(15.35)

$$\Rightarrow \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \quad \text{in } V \tag{15.36}$$

(Same as the heat transfer equation with $k=1,\,q^B=0)$

2.094 — Finite Element Analysis of Solids and Fluids	Fall '08
Lecture 16 - F.E. analysis of Navier-Stokes fluids	
Prof. K.J. Bathe MIT OpenC	ourseWare

Incompressible flow with heat transfer

We recall heat transfer for a solid:

Governing differential equations

 $(k\theta_{,i})_{,i} + q^B = 0 \qquad \text{in } V \tag{16.1}$

$$\theta\Big|_{S_{\theta}} \text{ is prescribed, } k \frac{\partial \theta}{\partial n}\Big|_{S_{q}} = q^{S}\Big|_{S_{q}}$$

$$(16.2)$$

$$S_{\theta} \cup S_q = S \qquad S_{\theta} \cap S_q = \emptyset \tag{16.3}$$

Principle of virtual temperatures

$$\int_{V} \overline{\theta}_{,i} k \theta_{,i} dV = \int_{V} \overline{\theta} q^{B} dV + \int_{S_{q}} \overline{\theta}^{S} q^{S} dS_{q}$$
(16.4)

for arbitrary continuous $\overline{\theta}(x_1,x_2,x_3)$ zero on \mathcal{S}_{θ}

For a fluid, we use the Eulerian formulation.

Reading: Sec. 7.1-7.4, Table 7.3

$$\rho c_p v \left. \theta \right|_x - \left\{ \rho c_p v \left. \theta \right|_x + \frac{\partial}{\partial x} (\rho c_p v \theta) dx \right\} + \text{ conduction } + \text{ etc}$$
(16.5)

In general 3D, we have an additional term for the left hand side of (16.1):

$$-\nabla \cdot (\rho c_p \boldsymbol{v} \theta) = -\rho c_p \nabla \cdot (\boldsymbol{v} \theta) = -\rho c_p (\boldsymbol{\nabla} \cdot \boldsymbol{v}) \theta - \underbrace{\rho c_p (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \theta}_{\text{term (A)}}$$
(16.6)

where $\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0$ in the incompressible case.

$$\boldsymbol{\nabla} \cdot \boldsymbol{v} = v_{i,i} = \operatorname{div}(\boldsymbol{v}) = 0 \tag{16.7}$$

So (16.1) becomes

$$(k\theta_{,i})_{,i} + q^B = \rho c_p \theta_{,i} v_i \Rightarrow (k\theta_{,i})_{,i} + \left(q^B - \rho c_p \theta_{,i} v_i\right) = 0$$
(16.8)

Principle of virtual temperatures is now (use (16.4))

$$\int_{V} \overline{\theta}_{,i} k \theta_{,i} dV + \int_{V} \overline{\theta} \left(\rho c_{p} \theta_{,i} v_{i} \right) dV = \int_{V} \overline{\theta} q^{B} dV + \int_{S_{q}} \overline{\theta}^{S} q^{S} dS_{q}$$
(16.9)

Navier-Stokes equations

• Differential form

$$\tau_{ij,j} + f_i^B = \rho v_{i,j} v_j \tag{16.10}$$

with $\rho v_{i,j} v_j$ like term (A) in (16.6) = $\rho(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}$ in V.

$$\tau_{ij} = -p\delta_{ij} + 2\mu e_{ij} \qquad e_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$
(16.11)

• Boundary conditions (need be modified for various flow conditions)

$$\tau_{ij}n_j = f_i^{S_f} \text{ on } S_f \tag{16.12}$$

Mostly used as $f_n = \tau_{nn} = \text{prescribed}$, $f_t = \text{unknown}$ with possibly $\frac{\partial v_n}{\partial n} = \frac{\partial v_t}{\partial n} = 0$ (outflow or inflow conditions).

And v_i prescribed on S_v , and $\mathbf{S}_v \cup \mathbf{S}_f = \mathbf{S}$ and $\mathbf{S}_v \cap \mathbf{S}_f = \emptyset$.

• Variational form

$$\int_{V} \overline{v}_{i} \rho v_{i,j} v_{j} dV + \int_{V} \overline{e}_{ij} \tau_{ij} dV = \int_{V} \overline{v}_{i} f_{i}^{B} dV + \int_{S_{f}} \overline{v}_{i}^{S_{f}} f_{i}^{S_{f}} dS_{f}$$
(16.13)

$$\int_{V} \overline{p} \nabla \cdot \boldsymbol{v} dV = 0 \tag{16.14}$$

 \bullet F.E. solution

We interpolate $(x_1, x_2, x_3), v_i, \overline{v}_i, \theta, \overline{\theta}, p, \overline{p}$. Good elements are

Both satisfy the inf-sup condition.

So in general,

Example:

For S_f e.g.

$$\tau_{nn} = 0, \qquad \frac{\partial v_t}{\partial n} = 0; \tag{16.15}$$

and $\frac{\partial v_n}{\partial t}$ is solved for. Actually, we frequently just set p = 0.

Frequently used is the 4-node element with constant pressure

It does not strictly satisfy the inf-sup condition. Or use

3-node element with a bubble node. Satisfies inf-sup condition

1D case of heat transfer with fluid flow, v = constant

• Differential equations

$$k\theta'' = \rho c_p \theta' v \tag{16.17}$$

$$\theta|_{x=0} = \theta_L \qquad \theta|_{x=L} = \theta_R \tag{16.18}$$

In non-dimensional form

$$\frac{1}{\text{Pe}}\theta'' = \theta' \qquad (\text{now } \theta'' \text{ and } \theta' \text{ are non-dimensional}) \tag{16.19}$$

$$\Rightarrow \frac{\theta - \theta_L}{\theta_R - \theta_L} = \frac{\exp\left(\frac{\mathrm{Pe}}{L}x\right) - 1}{\exp\left(\mathrm{Pe}\right) - 1} \tag{16.20}$$

68

Reading: Sec. 7.4

Reading: Sec. 7.4.3

. .

Reading: p. 683

 \bullet F.E. discretization

$$\theta'' = \mathrm{Pe}\theta'$$

(16.21)

$$\int_0^1 \overline{\theta}' \theta' dx + \operatorname{Pe} \int_0^1 \overline{\theta} \theta' dx = 0 + \{ \text{ effect of boundary conditions } = 0 \text{ here} \}$$
(16.22)

Using 2-node elements gives

$$\frac{1}{(h^*)^2} \left(\theta_{i+1} - 2\theta_i + \theta_{i-1}\right) = \frac{\text{Pe}}{2h^*} \left(\theta_{i+1} - \theta_{i-1}\right)$$
(16.23)

$$Pe = \frac{vL}{\alpha} \tag{16.24}$$

Define

$$\operatorname{Pe}^{e} = \operatorname{Pe} \cdot \frac{h}{L} = \frac{vh}{\alpha} \tag{16.25}$$

$$\left(-1 - \frac{\operatorname{Pe}^{e}}{2}\right)\theta_{i-1} + 2\theta_i + \left(\frac{\operatorname{Pe}^{e}}{2} - 1\right)\theta_{i+1} = 0$$
(16.26)

what is happening when Pe^e is large? Assume two 2-node elements only.

$$\theta_{i-1} = 0 \tag{16.27}$$

$$\theta_{i+1} = 1 \tag{16.28}$$

$$\theta_i = \frac{1}{2} \left(1 - \frac{\operatorname{Pe}^e}{2} \right) \tag{16.29}$$

(16.30)

For $\text{Pe}^e > 2$, we have *negative* θ_i (unreasonable).

 2.094 — Finite Element Analysis of Solids and Fluids
 Fall '08

 Lecture 17 - Incompressible fluid flow and heat transfer, cont'd

 Prof. K.J. Bathe
 MIT OpenCourseWare

17.1 Abstract body

Reading: Sec. 7.4

Fluid Flow	Heat transfer
S_v, S_f	S_{θ}, S_{q}
$S_v \cup S_f = S$	$\mathrm{S}_ heta \cup \mathrm{ar{S}}_q = S$
$\mathrm{S}_v \cap \mathrm{S}_f = 0$	$\mathrm{S}_ heta \cap \mathrm{S}_q = 0$

17.2 Actual 2D problem (channel flow)

17.3 Basic equations

P.V. velocities

$$\int_{V} \overline{v}_{i} \rho v_{i,j} v_{j} dV + \int_{V} \tau_{ij} \overline{e}_{ij} dV = \int_{V} \overline{v}_{i} f_{i}^{B} dV + \int_{S_{f}} \overline{v}_{i}^{S_{f}} f_{i}^{S_{f}} dS_{f}$$
(17.1)

Continuity

$$\int_{V} \overline{p}v_{i,i}dV = 0 \tag{17.2}$$

P.V. temperature

$$\int_{V} \overline{\theta} \rho c_{p} \theta_{,i} v_{i} dV + \int_{V} \overline{\theta}_{,i} k \theta_{,i} dV = \int_{V} \overline{\theta} q^{B} dV + \int_{S_{q}} \overline{\theta}^{S} q^{S} dS$$
(17.3)

F.E. solution

$$x_i = \sum h_k x_i^k \tag{17.4}$$

$$v_i = \sum h_k v_i^k \tag{17.5}$$

$$\theta = \sum h_k \theta_k \tag{17.6}$$

$$p = \sum \tilde{h}_k p_k \tag{17.7}$$

$$\Rightarrow \boxed{F(u) = R} \qquad u = \begin{pmatrix} v \\ p \\ \theta \end{pmatrix} \text{ nodal variables}$$
(17.8)

17.4 Model problem

1D equation,

$$\rho c_p v \frac{d\theta}{dx} = k \frac{d^2 \theta}{dx^2} \tag{17.9}$$

(v is given, unit cross section)

Non-dimensional form (Section 7.4)

$$\operatorname{Pe}\frac{d\theta}{dx} = \frac{d^2\theta}{dx^2} \tag{17.10}$$

(17.10) in F.E. analysis becomes

$$\int_{V} \overline{\theta} \operatorname{Pe} \frac{d\theta}{dx} dV + \int_{V} \frac{d\overline{\theta}}{dx} \frac{d\theta}{dx} dV = 0$$
(17.13)

Discretized by linear elements:

$$b^* = \frac{h}{L}$$

$$\theta(\xi) = \left(1 - \frac{\xi}{h^*}\right)\theta_{i-1} + \frac{\xi}{h^*}\theta_i \tag{17.14}$$

For node i:

$$-\theta_{i-1} - \frac{\operatorname{Pe}^{e}}{2}\theta_{i-1} + 2\theta_{i} - \theta_{i+1} + \frac{\operatorname{Pe}^{e}}{2}\theta_{i+1} = 0$$
(17.15)

where

$$\operatorname{Pe}^{e} = \frac{vh}{\alpha} \qquad \left(=\operatorname{Pe}\frac{h}{L}\right)$$
(17.16)

This result is the same as obtained by finite differences

$$\theta''\Big|_{i} = \frac{1}{(h^{*})^{2}} \left(\theta_{i+1} - 2\theta_{i} + \theta_{i-1}\right)$$
(17.17)

$$\theta'\Big|_i = \frac{\theta_{i+1} - \theta_{i-1}}{2h^*} \tag{17.18}$$

Considered $\theta_{i+1} = 1$, $\theta_{i-1} = 0$. Then

$$\theta_i = \frac{1 - (\text{Pe}^e/2)}{2} \tag{17.19}$$

Physically unrealistic solution when $\text{Pe}^e > 2$. For this not to happen, we should refine the mesh—a very fine mesh would be required. We use "upwinding"

$$\left. \frac{d\theta}{dx} \right|_i = \frac{\theta_i - \theta_{i-1}}{h^*} \tag{17.20}$$

The result is

$$(-1 - \mathrm{Pe}^{e})\,\theta_{i-1} + (2 + \mathrm{Pe}^{e})\,\theta_{i} - \theta_{i+1} = 0 \tag{17.21}$$

Very stable, e.g.

Unfortunately it is not that accurate. To obtain better accuracy in the interpolation for θ , use the function

$$\frac{\exp\left(\operatorname{Pe}\frac{x}{L}\right) - 1}{\exp\left(\operatorname{Pe}\right) - 1} \tag{17.23}$$

The result is Pe^e dependent:

This implies flow-condition based interpolation. We use such interpolation functions—see references.

References

- K.J. Bathe and H. Zhang. "A Flow-Condition-Based Interpolation Finite Element Procedure for Incompressible Fluid Flows." Computers & Structures, 80:1267–1277, 2002.
- [2] H. Kohno and K.J. Bathe. "A Flow-Condition-Based Interpolation Finite Element Procedure for Triangular Grids." International Journal for Numerical Methods in Fluids, 51:673–699, 2006.

17.5 FSI briefly

Lagrangian formulation for the structure/solid

Arbitrary Lagrangian-Eulerian (ALE) formulation Let f be a variable of a particle (e.g. $f = \theta$). Consider 1D

$$\dot{f}\Big|_{\text{particle}} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x}v \tag{17.24}$$

where v is the particle velocity. For a mesh point,

$$f^*\Big|_{\text{mesh point}} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x}v_m \tag{17.25}$$

where v_m is the mesh point velocity. Hence,

$$\dot{f}\Big|_{\text{particle}} = f^*\Big|_{\text{mesh point}} + \frac{\partial f}{\partial x} \left(v - v_m\right)$$
(17.26)

Use (17.26) in the momentum and energy equations and use force equilibrium and compatibility at the FSI boundary to set up the governing F.E. equations.

References

- K.J. Bathe, H. Zhang and M.H. Wang. "Finite Element Analysis of Incompressible and Compressible Fluid Flows with Free Surfaces and Structural Interactions." Computers & Structures, 56:193–213, 1995.
- [2] K.J. Bathe, H. Zhang and S. Ji. "Finite Element Analysis of Fluid Flows Fully Coupled with Structural Interactions." Computers & Structures, 72:1–16, 1999.
- [3] K.J. Bathe and H. Zhang. "Finite Element Developments for General Fluid Flows with Structural Interactions." International Journal for Numerical Methods in Engineering, 60:213–232, 2004.

In structures,

$$F(u, p) = R.$$

Reading: Sec. 8.4 (18.1)

In heat transfer,

$$\boldsymbol{F}(\boldsymbol{\theta}) = \boldsymbol{Q} \tag{18.2}$$

In fluid flow,

$$F(v, p, \theta) = R \tag{18.3}$$

In structures/solids

$$\boldsymbol{F} = \sum_{m} \boldsymbol{F}^{(m)} = \sum_{m} \int_{{}^{0}V^{(m)}} {}^{t}_{0} \boldsymbol{B}_{L}^{(m)} {}^{T}_{0} {}^{t}_{0} \hat{\boldsymbol{S}}^{(m)} d^{0} V^{(m)}$$
(18.4)

Elastic materials

Material law

$${}_{0}^{t}S_{11} = \tilde{E}_{0}^{t}\epsilon_{11} \tag{18.5}$$

In isotropic elasticity:

$$\tilde{E} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}, \qquad (\nu = 0.3)$$
(18.6)

$${}_{0}^{t}\boldsymbol{\epsilon} = \frac{1}{2} \left[\left({}_{0}^{t}\boldsymbol{U} \right)^{2} - \boldsymbol{I} \right] \Rightarrow {}_{0}^{t}\boldsymbol{\epsilon}_{11} = \frac{1}{2} \left[\left(\frac{{}^{0}\boldsymbol{L} + {}^{t}\boldsymbol{u}}{{}^{0}\boldsymbol{L}} \right)^{2} - 1 \right] = \frac{1}{2} \left[\left(1 + \frac{{}^{t}\boldsymbol{u}}{{}^{0}\boldsymbol{L}} \right)^{2} - 1 \right]$$
(18.7)

where ${}_{0}^{t}\boldsymbol{U}$ is the stretch tensor.

$${}_{0}^{t}S_{11} = \frac{{}_{0}^{0}\rho}{{}_{t}\rho}{}_{t}^{0}X_{11}{}^{t}\tau_{11}{}_{t}^{0}X_{11}^{T}$$
(18.8)

with

$${}^{0}_{t}X_{11} = \frac{{}^{0}L}{{}^{0}L + {}^{t}u}, \qquad {}^{0}\rho^{0}L = {}^{t}\rho^{t}L$$
(18.9)

$$\Rightarrow {}_{0}^{t}S_{11} = \frac{{}^{t}L}{{}^{0}L} \left(\frac{{}^{0}L}{{}^{t}L}\right)^{2} {}^{t}\tau_{11} = \frac{{}^{0}L}{{}^{t}L} {}^{t}\tau_{11}$$
(18.10)

$$\therefore \frac{{}^{0}L}{{}^{t}L}{}^{t}\tau_{11} = \tilde{E} \cdot \frac{1}{2} \left[\left(1 + \frac{{}^{t}u}{{}^{0}L} \right)^{2} - 1 \right]$$
(18.11)

$$\Rightarrow {}^{t}\tau_{11}\overline{A} = \boxed{{}^{t}P = \frac{\tilde{E}\overline{A}}{2} \left[\left(1 + \frac{{}^{t}u}{{}^{0}L}\right)^{2} - 1 \right] \left(1 + \frac{{}^{t}u}{{}^{0}L}\right)}$$
(18.12)

This is because of the material-law assumption (18.5) (okay for small strains ...)

Hyperelasticity

 ${}_{0}^{t}W = f(\text{Green-Lagrange strains, material constants})$ (18.13)

$${}_{0}^{t}S_{ij} = \frac{1}{2} \left(\frac{\partial_{0}^{t}W}{\partial_{0}^{t}\epsilon_{ij}} + \frac{\partial_{0}^{t}W}{\partial_{0}^{t}\epsilon_{ji}} \right)$$
(18.14)

$${}_{0}C_{ijrs} = \frac{1}{2} \left(\frac{\partial_{0}^{t}S_{ij}}{\partial_{0}^{t}\epsilon_{rs}} + \frac{\partial_{0}^{t}S_{ij}}{\partial_{0}^{t}\epsilon_{sr}} \right)$$
(18.15)

Plasticity

- yield criterion
- flow rule
- hardening rule

$${}^{t}\boldsymbol{\tau} = {}^{t-\Delta t}\boldsymbol{\tau} + \int_{t-\Delta t}^{t} d\boldsymbol{\tau}$$
(18.16)

Solution of (18.1) (similarly (18.2) and (18.3))

Newton-Raphson Find U^* as the zero of $f(U^*)$

$$\boldsymbol{f}(\boldsymbol{U}^*) = {}^{t+\Delta t}\boldsymbol{R} - {}^{t+\Delta t}\boldsymbol{F}$$
(18.17)

$$= \boldsymbol{f} \left({}^{t+\Delta t} \boldsymbol{U}^{(i-1)} \right) + \left. \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{U}} \right|_{t+\Delta t} \boldsymbol{U}^{(i-1)} \cdot \left(\boldsymbol{U}^* - {}^{t+\Delta t} \boldsymbol{U}^{(i-1)} \right) + H.O.T.$$
(18.18)

where ${}^{t+\Delta t} U^{(i-1)}$ is the value we just calculated and an approximation to U^* .

Assume ${}^{t+\Delta t}\mathbf{R}$ is independent of the displacements.

$$\mathbf{0} = \left({}^{t+\Delta t} \mathbf{R} - {}^{t+\Delta t} \mathbf{F}^{(i-1)} \right) - \left. \frac{\partial^{t+\Delta t} \mathbf{F}}{\partial \mathbf{U}} \right|_{t+\Delta t \mathbf{U}^{(i-1)}} \cdot \Delta \mathbf{U}^{(i)}$$
(18.19)

We obtain

$${}^{t+\Delta t}\boldsymbol{K}^{(i-1)}\Delta\boldsymbol{U}^{(i)} = {}^{t+\Delta t}\boldsymbol{R} - {}^{t+\Delta t}\boldsymbol{F}^{(i-1)}$$
(18.20)

$${}^{t+\Delta t}\boldsymbol{K}^{(i-1)} = \left.\frac{\partial^{t+\Delta t}\boldsymbol{F}}{\partial \boldsymbol{U}}\right|_{t+\Delta t\boldsymbol{U}^{(i-1)}} = \left.\left(\frac{\partial\boldsymbol{F}}{\partial\boldsymbol{U}}\right)\right|_{t+\Delta t\boldsymbol{U}^{(i-1)}}$$
(18.21)

Physically

Pictorially for a single degree of freedom system

$$i = 1;$$
 ${}^{t}K\Delta u^{(1)} = {}^{t+\Delta t}R - {}^{t}F$ (18.23)

$$i = 2;$$
 $t + \Delta t K^{(1)} \Delta u^{(2)} = t + \Delta t R - t + \Delta t F^{(1)}$ (18.24)

Convergence Use

$$\|\Delta \boldsymbol{U}^{(i)}\|_2 < \epsilon \tag{18.25}$$

$$\|\boldsymbol{a}\|_{2} = \sqrt{\sum_{i} (a_{i})^{2}}$$
(18.26)

But, if incremental displacements are small in every iteration, need to also use

$$\|^{t+\Delta t}\boldsymbol{R} - {}^{t+\Delta t}\boldsymbol{F}^{(i-1)}\|_2 < \epsilon_R \tag{18.27}$$

18.1 Slender structures

(beams, plates, shells)

 $\frac{t}{L_i} \ll 1$

(18.28)

Beam

e.g.
$$\frac{t}{L} = \frac{1}{100}$$

(4-node el.) The element does not have curvature \rightarrow we have a spurious shear strain

(9-node el.) \rightarrow We do not have a shear (better) \rightarrow But, still for thin structures, it has problems like ill-conditioning.

 \Rightarrow We need to use beam elements. For curved structures also spurious membrane strain can be present.

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 19 - Slender structures MIT OpenCourseWare

Beam analysis, $\frac{t}{L} \ll 1$ (e.g. $\frac{t}{L} = \frac{1}{100}, \frac{1}{1000}, \cdots$)

Reading: Sec. 5.4, 6.5

(plane stress)

$$\boldsymbol{J} = \begin{bmatrix} \frac{L}{2} & 0\\ 0 & \frac{t}{2} \end{bmatrix} \tag{19.1}$$

$$h_2 = \frac{1}{4} \left(1 - r \right) \left(1 + s \right) \tag{19.2}$$

$$h_3 = \frac{1}{4} \left(1 - r \right) \left(1 - s \right) \tag{19.3}$$

Beam theory assumptions (Timoshenko beam theory):

$$v_2^* = v_3^* = v_2 \tag{19.4}$$

$$u_3^* = u_2 + \frac{\iota}{2}\theta_2 \tag{19.5}$$

$$u_2^* = u_2 - \frac{t}{2}\theta_2 \tag{19.6}$$

$$\boldsymbol{B}^{*} = \begin{bmatrix} -\frac{1}{4}(1+s)\frac{2}{L} & 0 & -\frac{1}{4}(1-s)\frac{2}{L} & 0 \\ 0 & \frac{1}{4}(1-r)\frac{2}{t} & 0 & -\frac{1}{4}(1-r)\frac{2}{t} \\ \frac{1}{4}(1-r)\frac{2}{t} & -\frac{1}{4}(1+s)\frac{2}{L} & -\frac{1}{4}(1-r)\frac{2}{t} & -\frac{1}{4}(1-s)\frac{2}{L} \end{bmatrix}$$
etc (19.7)

$$\boldsymbol{B}_{\text{beam}} = \begin{bmatrix} u_2 & v_2 & \theta_2 \\ -\frac{1}{L} & 0 & \frac{t}{2L}s \\ \dots & \emptyset & \emptyset & \emptyset \\ 0 & -\frac{1}{L} & -\frac{1}{2}(1-r) \end{bmatrix} \sim \begin{pmatrix} \frac{\partial u}{\partial x} \\ 0 \\ \frac{\partial y'}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{pmatrix}$$
(19.8)

$$v(r) = \frac{1}{2}(1-r)v_2 \tag{19.9}$$

$$u(r) = \frac{1}{2}(1-r)u_2 - \frac{st}{4}(1-r)\theta_2$$
(19.10)

at r = -1,

$$v(-1) = v_2 \tag{19.11}$$

$$u(-1) = -\frac{st}{2}\theta_2 + u_2 \tag{19.12}$$

Kinematics is

$$u(r) = \frac{1}{2}(1-r)u_2$$
(19.13)
results into ϵ_{rr}

results into ϵ_{xx}

$$\rightarrow \epsilon_{xx} = \frac{\partial u}{\partial r} \cdot \frac{2}{L} = -\frac{1}{L}$$
 (19.14)

$$u(r,s) = -\frac{st}{4}(1-r)\theta_2$$
(19.15)

results into ϵ_{xx} , γ_{xy}

$$\rightarrow \epsilon_{xx} = \frac{st}{2L} \tag{19.16}$$

$$\gamma_{xy} = \frac{\partial u}{\partial s} \cdot \frac{2}{t} = -\frac{1}{2}(1-r) \tag{19.17}$$

$$v(r) = \frac{1}{2}(1-r)v_2 \tag{19.18}$$

1=吃.个

results into
$$\gamma_{xy}$$

$$\rightarrow \gamma_{xy} = -\frac{1}{L} \tag{19.19}$$

For a pure bending moment, we want

$$-\frac{1}{L}v_2 - \frac{1}{2}(1-r)\theta_2 = 0 \tag{19.20}$$

for all $r! \Rightarrow$ Impossible (except for $v_2 = \theta_2 = 0$) \Rightarrow So, the element has a spurious shear strain!

Beam kinematics (Timoshenko, Reissner-Mindlin)

$$\gamma = \frac{dw}{dx} - \beta \tag{19.21}$$

$$\left(I = \frac{1}{12}bt^3\right) \tag{19.22}$$

Principle of virtual work

$$EI \int_{0}^{L} \frac{d\overline{\beta}}{dx} \frac{d\beta}{dx} dx + A_{S}G \int_{0}^{L} \left(\frac{d\overline{w}}{dx} - \overline{\beta}\right) \left(\frac{dw}{dx} - \beta\right) dx = \int_{0}^{L} p\overline{w} dx$$
(19.23)

$$A_s = kA = kbt \tag{19.24}$$

To calculate k

$$\int_{A} \frac{1}{2G} (\tau_{a})^{2} dA = \int_{A_{S}} \frac{1}{2G} \left(\frac{V}{A_{s}}\right)^{2} dA_{s}$$
(19.25)

where τ_a is the actual shear stress:

$$\tau_a = \frac{3}{2} \cdot \frac{V}{A} \left[\frac{\left(\frac{t}{2}\right)^2 - y^2}{\left(\frac{t}{2}\right)^2} \right]$$
(19.26)

and V is the shear force.

$$\Rightarrow k = \frac{5}{6} \tag{19.27}$$

Reading: Ex. 5.23

Reading:

Now interpolate

$$w(r) = h_1 w_1 + h_2 w_2$$
(19.28)

$$\beta(r) = h_1 \theta_1 + h_2 \theta_2$$
(19.29)

Revisit the simple case:

$$w = \frac{1+r}{2}w_1 \tag{19.30}$$
$$\beta = \frac{1+r}{2}\theta_1 \tag{19.31}$$

Shearing strain

$$\gamma = \frac{w_1}{L} - \frac{1+r}{2}\theta_1 \tag{19.32}$$

Shear strain is not zero all along the beam. But, at r = 0, we can have the shear strain = 0.

$$\frac{w_1}{L} - \frac{\theta_1}{2} \text{ can be zero} \tag{19.33}$$

Namely,

$$\frac{w_1}{L} - \frac{\theta_1}{2} = 0 \quad \text{for} \quad \theta_1 = \frac{2}{L} w_1$$
 (19.34)

2.094 — Finite Element Analysis of Solids and Fluids Fall '08 Lecture 20 - Beams, plates, and shells MIT OpenCourseWare

Timoshenko beam theory

The fiber moves up and rotates and its length does not change.

Principle of virtual displacement (Linear Analysis)

$$EI \int_{0}^{L} \left(\overline{\beta}'\right)^{T} \beta' dx + (Ak)G \int_{0}^{L} \left(\frac{d\overline{w}}{dx} - \overline{\beta}\right)^{T} \left(\frac{dw}{dx} - \beta\right) dx = \int_{0}^{L} \overline{w}^{T} p dx$$
(20.1)

Two-node element:

Three-node element:

For a q-node element,

$$\hat{\boldsymbol{u}} = \begin{bmatrix} w_1 & \cdots & w_q & \theta_1 & \cdots & \theta_q \end{bmatrix}^T$$

$$w = \boldsymbol{H}_w \hat{\boldsymbol{u}}$$
(20.2)
(20.3)

$$w = H_w u \tag{20.3}$$
$$\beta = H_\beta \hat{u} \tag{20.4}$$

$$\boldsymbol{H}_w = \begin{bmatrix} h_1 & \cdots & h_q & 0 & \cdots & 0 \end{bmatrix}$$
(20.5)

$$\boldsymbol{H}_{\beta} = \begin{bmatrix} 0 & \cdots & 0 & h_1 & \cdots & h_q \end{bmatrix}$$
(20.6)

$$J = \frac{dx}{dr}$$
(20.7)

$$\frac{dw}{dx} = \underbrace{\mathbf{J}^{-1} \mathbf{H}_{w,r}}_{\mathbf{u}} \hat{\mathbf{u}}$$
(20.8)

$$\frac{d\beta}{dx} = \underbrace{J^{-1}H_{\beta,r}}_{B_{\beta}} \hat{u}$$
(20.9)

Hence we obtain

$$\begin{bmatrix} EI \int_{-1}^{1} \boldsymbol{B}_{\beta}^{T} \boldsymbol{B}_{\beta} \det(\boldsymbol{J}) dr + (Ak)G \int_{-1}^{1} \left(\boldsymbol{B}_{w} - \boldsymbol{H}_{\beta}\right)^{T} \left(\boldsymbol{B}_{w} - \boldsymbol{H}_{\beta}\right) \det(\boldsymbol{J}) dr \end{bmatrix} \hat{\boldsymbol{u}}$$
$$= \int_{-1}^{1} \boldsymbol{H}_{w}^{T} p \det(\boldsymbol{J}) dr \quad (20.10)$$

$$\boxed{\boldsymbol{K}\hat{\boldsymbol{u}} = \boldsymbol{R}}$$
(20.11)

K is a result of the term inside the bracket in (20.10) and R is a result of the right hand side. For the 2-node element,

$$w_1 = \theta_1 = 0 \tag{20.12}$$

$$w_2, \theta_2 = ?$$
 (20.13)

$$\gamma = \frac{w_2}{L} - \frac{1+r}{2}\theta_2 \tag{20.14}$$

We cannot make γ equal to zero for every r (page 404, textbook). Because of this, we need to use about 200 elements to get an error of 10%. (Not good!)

Recall almost or fully incompressible analysis: Principle of virtual displacements:

$$\int_{V} \overline{\epsilon'}^{T} C' \epsilon' dV + \int_{V} \overline{\epsilon}_{v} (\kappa \epsilon_{v}) dV = \mathcal{R}$$
(20.15)

u/p formulation

$$\int_{V} \overline{\epsilon}'^{T} C' \epsilon' dV - \int_{V} \overline{\epsilon}_{v} p dV = \mathcal{R}$$
(20.16)

$$\int_{V} \overline{p} \left(\frac{p}{\kappa} + \epsilon_{v}\right) dV = 0 \tag{20.17}$$

But now we needed to select wisely the interpolations of u and p. We needed to satisfy the inf-sup condition

$$\underbrace{\inf_{q_h \in \mathbf{Q}_h} \sup_{\boldsymbol{v}_h \in \mathbf{V}_h} \frac{\int_{\mathbf{Vol}} q_h \boldsymbol{\nabla} \cdot \boldsymbol{v}_h d\mathbf{Vol}}{\|q_h\| \|v_h\|} \ge \beta > 0$$
(20.18)

4/1 element:

We can show mathematically that this element does not satisfy inf-sup condition. But, we can also show it by giving an example of this element which violates the inf-sup condition.

 $v_1 = \Delta$, $v_2 = 0 \Rightarrow \nabla \cdot v_h$ for both elements is positive and the same. Now, if I choose pressures as above

$$\int_{\text{Vol}} q_h \nabla \boldsymbol{v}_h d\text{Vol} = 0, \quad \text{hence (20.18) is not satisfied!}$$
(20.19)

9/3 element

J

satisfies inf-sup

9/4-c

Getting back to beams

$$EI \int_{0}^{L} \overline{\beta}' \beta dx + (AkG) \int_{0}^{L} \left(\frac{d\overline{w}}{dx} - \overline{\beta}\right) \gamma^{AS} dx = \mathcal{R}$$
(20.20)

$$\int_0^L \bar{\gamma}^{AS} \left(\gamma - \gamma^{AS}\right) dx = 0 \tag{20.21}$$

where

$$\gamma = \frac{dw}{dx} - \beta$$
, from displacement interpolation (20.22)

$$\gamma^{AS} =$$
 Assumed shear strain interpolation (20.23)

2-node element, constant shear assumption. From (20.21),

$$\int_{0}^{L} \left(\frac{dw}{dx} - \beta\right) \overline{\gamma}^{\mathcal{AS}} dx = \int_{0}^{L} \gamma^{AS} \overline{\gamma}^{\mathcal{AS}} dx \tag{20.24}$$

$$\Rightarrow -\int_{-1}^{+1} \left(\frac{1+r}{2}\theta_2\right) \cdot \frac{L}{2}dr + w_2 = \gamma^{AS} \cdot L \tag{20.25}$$

$$\Rightarrow \gamma^{AS} = \frac{w_2 - \frac{L}{2}\theta_2}{L} \tag{20.26}$$

θ.

 γ^{AS} (shear strain) is equal to the displacement-based shear strain at the middle of the beam.

 $\omega_i = \theta_i = 0$.

Use γ^{AS} in (20.20) to obtain a powerful element. For "our problem",

$$\gamma^{AS} = 0 \quad \text{hence} \quad w_2 = \frac{L}{2}\theta_2 \tag{20.27}$$

$$\Rightarrow EI \int_{0}^{L} \overline{\beta}' \beta' dx = M \,\overline{\beta}\big|_{x=L} \tag{20.28}$$

$$\Rightarrow EI\left(\left(\frac{1}{L}\right)^2 \cdot L\right)\theta_2 = M \tag{20.29}$$

$$\Rightarrow \theta_2 = \frac{ML}{EI}, \qquad w_2 = \frac{ML^2}{2EI}$$
(20.30)

(exact solutions)

;)

Reading: Sec. 4.5.7

Plates

$$\begin{cases} w = w(x, y) & \text{is the transverse displacement of the mid-surface} \\ v = -z\beta_y(x, y) \\ u = -z\beta_x(x, y) \end{cases}$$
(20.31)

For any particle in the plate with coordinates (x, y, z), the expressions in (20.31) hold! We use

$$w = \sum_{i=1}^{q} h_i w_i \tag{20.32}$$

$$\beta_x = -\sum_{i=1}^q h_i \theta_y^i \tag{20.33}$$

$$\beta_y = +\sum_{i=1}^q h_i \theta_x^i \tag{20.34}$$

where q equals the number of nodes. Then the element locks in the same way as the displacement-based beam element.

2.094 — Finite Element Analysis of Solids and Fluids	Fall '08
Lecture 21 - Plates and shells	
Prof. K.J. Bathe	MIT OpenCourseWare

 $Timoshenko\ beam\ theory,\ and\ Reissner-Mindlin\ plate\ theory$

For plates, and shells, w, β_x , and β_y as independent variables.

w = displacement of mid-surface, w(x, y)

x, u

A =area of mid-surface

p = load per unit area on mid-surface

$$w = w(x, y) \tag{21.1}$$

$$w(x, y, z) = w(x, y) \tag{21.2}$$

The material particles at "any z" move in the z-direction as the mid-surface.

 $u(x, y, z) = -\beta_x z = -\beta_x(x, y)z \tag{21.3}$

$$v(x,y,z) = -\beta_y z = -\beta_y(x,y)z \tag{21.4}$$

$$\epsilon_{xx} = \frac{\partial u}{\partial x} = -z \frac{\partial \beta_x}{\partial x} \tag{21.5}$$

$$\epsilon_{yy} = \frac{\partial v}{\partial y} = -z \frac{\partial \beta_y}{\partial y} \tag{21.6}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = -z \left(\frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_y}{\partial x} \right)$$
(21.7)

$$\begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \gamma_{xy} \end{pmatrix} = -z \underbrace{\begin{pmatrix} \frac{\partial \beta_x}{\partial x} \\ \frac{\partial \beta_y}{\partial y} \\ \frac{\partial \beta_y}{\partial y} \\ \frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_y}{\partial x} \end{pmatrix}}_{\kappa}$$
(21.8)

$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} = \frac{\partial w}{\partial x} - \beta_x \tag{21.9}$$

$$\gamma_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} = \frac{\partial w}{\partial y} - \beta_y \tag{21.10}$$

$$\begin{pmatrix} \tau_{xx} \\ \tau_{yy} \\ \tau_{xy} \end{pmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \gamma_{xy} \end{pmatrix} = \boldsymbol{C} \cdot \boldsymbol{\epsilon}$$
(21.11)

(plane stress)

$$\begin{pmatrix} \tau_{xz} \\ \tau_{yz} \end{pmatrix} = \frac{E}{2(1+\nu)} \begin{pmatrix} \gamma_{xz} \\ \gamma_{yz} \end{pmatrix} = G\gamma$$
(21.12)

Principle of virtual work for the plate:

$$\int_{A} \int_{-\frac{t}{2}}^{+\frac{t}{2}} \left(\overline{\epsilon}_{xx} \quad \overline{\epsilon}_{yy} \quad \overline{\gamma}_{xy} \right) \frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \gamma_{xy} \end{pmatrix} dz dA + k \int_{A} \int_{-\frac{t}{2}}^{+\frac{t}{2}} \left(\overline{\gamma}_{xz} \quad \overline{\gamma}_{yz} \right) G \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{pmatrix} \gamma_{xz} \\ \gamma_{yz} \end{pmatrix} dz dA = \int_{A} \overline{w} p dA$$
(21.13)

Consider a flat element:

where \boldsymbol{K}_b is 12x12 and $\boldsymbol{K}_{\text{pl. str.}}$ is 8x8.

For a flat element:

$$\Rightarrow \begin{bmatrix} \mathbf{K}_{b} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{\text{pl. str.}} \end{bmatrix} \begin{pmatrix} w_{1} \\ \theta_{x}^{1} \\ \theta_{y}^{1} \\ \vdots \\ \theta_{y}^{4} \\ u_{1} \\ v_{1} \\ \vdots \\ v_{4} \end{pmatrix} = \cdots$$
(21.15)

 $u = \sum h_i u_i \tag{21.16}$

$$v = \sum h_i v_i \tag{21.17}$$

$$w = \sum h_i w_i \tag{21.18}$$

$$\beta_x = -\sum h_i \theta_y^i \tag{21.19}$$

$$\beta_y = \sum h_i \theta_x^i \tag{21.20}$$

From (21.13)

$$\int_{A} \overline{\kappa}^{T} \frac{Et^{3}}{12\left(1-\nu^{2}\right)} \begin{bmatrix} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \kappa dA + \int_{A} \overline{\gamma}^{T} Gt \cdot k \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \gamma dA$$
(21.21)

where k is the shear correction factor.

Next, evaluate $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$, $\frac{\partial \beta_x}{\partial x}$, ... etc. \Rightarrow This element, as it is, locks!

This displacement-based element "locks in shear". We need to change the transverse shear interpolations.

$$\gamma_{yz} = \frac{1}{2}(1-r)\gamma_{yz}^A + \frac{1}{2}(1+r)\gamma_{yz}^C \tag{21.22}$$

where

$$\gamma_{yz}^{A} = \left. \left(\frac{\partial w}{\partial y} - \beta_{y} \right) \right|_{\text{evaluated at A}}$$
(21.23)

from the $w,\,\beta_y$ displacement interpolations.

$$\gamma_{xz} = \frac{1}{2}(1-s)\gamma_{xz}^B + \frac{1}{2}(1+s)\gamma_{xz}^D$$
(21.24)

with this mixed interpolation, the element works. Called MITC interpolation (for **m**ixed **i**nterpolated-tensional **c**omponents)

Aside: Why not just neglect transverse shears, as in Kirchhoff plate theory?

- If we do, $\gamma_{xz} = \frac{\partial w}{\partial x} \beta_x = 0 \Rightarrow \beta_x = \frac{\partial w}{\partial x}$
- Therefore we have $\left(\frac{\partial^2 w}{\partial x^2}, \cdots\right)$ in strains, so we need continuity also for $\left(\frac{\partial w}{\partial x}, \cdots\right)$

•
$$\frac{1}{2}r(1+r)w_1 - \frac{1}{2}r(1-r)w_2 + (1-r^2)w_3$$

 w_2 and w_3 never affect w_1 ($\therefore w|_{r=1} = w_1$).

But,

$$\frac{\partial w}{\partial r} = \frac{1}{2}(1+2r)w_1 - \frac{1}{2}(1-2r)w_2 - 2rw_3$$

 w_2 and w_3 affect $\frac{\partial w}{\partial r}\Big|_1$. \Rightarrow This results in difficulties to develop a good element based on Kirchhoff theory.

With Reissner-Mindlin theory, we independently interpolate rotations such that this problem does not arise.

For flat structures, we can superimpose the plate bending and plane stress element stiffness. For shells, curved structures, we need to develop/use curved elements, see references.

References

- E. Dvorkin and K.J. Bathe. "A Continuum Mechanics Based Four-Node Shell Element for General Nonlinear Analysis." *Engineering Computations*, 1:77–88, 1984.
- [2] K.J. Bathe and E. Dvorkin. "A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation." *International Journal for Numerical Methods in Engineering*, 21:367–383, 1985.
- K.J. Bathe, A. Iosilevich and D. Chapelle. "An Evaluation of the MITC Shell Elements." Computers & Structures, 75:1–30, 2000.
- [4] D. Chapelle and K.J. Bathe. The Finite Element Analysis of Shells Fundamentals. Springer, 2003.

2.094 Finite Element Analysis of Solids and Fluids II Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.