2.094
 Finite Element Analysis of Solids and Fluids Spring 2008

	Homework 1 - Solution		
		Assigned:	02/07/2008
Instructor:	Prof. K. J. Bathe	Due:	$02 / 14 / 2008$

Problem 1 (10 points):
In this problem, the principle of virtual work reduces to

$$
\int_{t_{V}}{ }^{t} \boldsymbol{\tau}_{22}{ }_{t} \bar{e}_{22} d^{t} V=\int_{{ }^{t} \boldsymbol{t}_{f}} \overline{\boldsymbol{u}}^{{ }^{t} \boldsymbol{S}_{f}}{ }^{\boldsymbol{t}} \boldsymbol{f}_{x_{2}} d^{t} \boldsymbol{S}_{f}
$$

Figure 1. Three simple independent virtual displacement patterns.
(a) a simple tension in the x_{1} direction; (b) a simple tension in the \mathbf{x}_{2} direction; (c) a simple shear
(a) A simple extension in $\boldsymbol{x}_{\mathbf{1}}$ direction; $\overline{\boldsymbol{u}}_{\mathbf{1}}=\left({ }^{\boldsymbol{t}} \boldsymbol{x}_{\mathbf{1}}-\mathbf{1}\right)$ and $\overline{\boldsymbol{u}}_{\mathbf{2}}=\mathbf{0}$

$$
\begin{aligned}
t^{\bar{e}_{22}} & =0 \\
\overline{\boldsymbol{u}}_{2}^{t^{t} \boldsymbol{S}_{f}} & =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{t_{V}}{ }^{t} \tau_{22} \bar{e}_{22} d^{t} V=0 \\
& \int_{t_{S_{f}}} \bar{u}_{2}{ }^{t} S_{f}{ }^{t} f_{x_{2}} d^{t} S_{f}=0
\end{aligned}
$$

Check!

(b) A simple extension in $\boldsymbol{x}_{\mathbf{2}}$ direction; $\overline{\boldsymbol{u}}_{\mathbf{1}}=\mathbf{0}$ and $\overline{\boldsymbol{u}}_{\mathbf{2}}=\left({ }^{\boldsymbol{t}} \boldsymbol{x}_{\mathbf{2}}+\mathbf{1}\right)$

$$
\bar{u}_{2}^{{ }_{t} \overline{\boldsymbol{e}}_{22}=\mathbf{1}}{ }^{\boldsymbol{S}_{f}}=\mathbf{4} \text { (on the top surface) and } \overline{\boldsymbol{u}}_{2}^{{ }^{t} \boldsymbol{S}_{f}}=\mathbf{0} \text { (on the bottom surface) }
$$

Therefore,

$$
\begin{gathered}
\int_{t_{V}}{ }^{t} \tau_{22} \bar{e}_{22} d^{t} V=\int_{t_{V}} 20 \times 1 d^{t} V=20 \times{ }^{t} V=80 \\
\int_{{ }^{t} S_{f}} \bar{u}_{2}{ }^{{ }^{t} S_{f}}{ }^{t} f_{x_{2}} d^{t} S_{f}=\int_{{ }^{t} S_{f}} 4 \times 20 d^{t} S_{f}=80 \times{ }^{t} S_{f}=80
\end{gathered}
$$

Check!

(c) A simple shear; $\overline{\boldsymbol{u}}_{\mathbf{1}}=\mathbf{0}$ and $\overline{\boldsymbol{u}}_{\mathbf{2}}=\left(\mathbf{1}-{ }^{\boldsymbol{t}} \boldsymbol{x}_{\mathbf{1}}\right)$

$$
\begin{gathered}
{ }_{t} \bar{e}_{22}=0 \\
\bar{u}_{2}{ }^{S_{f}}=1-{ }^{t} x_{1}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\int_{t_{V}}{ }^{t} \tau_{22} \bar{e}_{22} d^{t} V=0 \\
\int_{{ }^{t} S_{f}} \bar{u}_{2}{ }^{t} S_{f}{ }^{t} f_{x_{2}} d^{t} S_{f}=\int_{{ }^{t} S_{f_{1}}} 20 \times\left(1-{ }^{t} x_{1}\right) d^{t} S_{f_{1}}+\int_{{ }^{t} S_{f_{2}}}(-20) \times\left(1-{ }^{t} x_{1}\right) d^{t} S_{f_{2}} \\
= \\
\mathbf{2 0} \int_{0}^{1}\left(1-{ }^{t} x_{1}\right) d^{t} x_{1}-20 \int_{0}^{1}\left(1-{ }^{t} x_{1}\right) d^{t} x_{1}=0 \\
\text { (on the top surface) } \quad \text { (on the bottom surface) }
\end{gathered}
$$

Check!

Problem 2 (20 points):

Figure 2. Plate with a hole in tension

In this solution, the horizontal symmetry line corresponds to the line CD and the vertical symmetry line corresponds to the line $A B$. The distance of the horizontal line is measured from the point C and the distance of the vertical line is measured from the point A . (See Figure 2.)

The stresses are shown through Figures 3 and 6 . We can see that the solutions obtained with 9 -node elements are better than those obtained with 4 -node elements. One possible way, in general, to check calculated solutions is to see whether the stress boundary conditions are satisfied. Here, we know that we should have $\left.\boldsymbol{\tau}_{z z}\right|_{A}=\mathbf{2 5}$ due to the applied traction and $\left.\boldsymbol{\tau}_{z z}\right|_{B}=\left.\boldsymbol{\tau}_{\boldsymbol{y} \boldsymbol{y}}\right|_{C}=\left.\boldsymbol{\tau}_{\boldsymbol{y} \boldsymbol{y}}\right|_{\boldsymbol{D}}=\mathbf{0}$ because no tractions are applied at the points B, C, and D. The solutions obtained with 9 -node elements are closer to these exact values than those obtained with 4-node elements. In this problem we also have the analytical solutions for the $\boldsymbol{\tau}_{\boldsymbol{z z}}$ at point C and D , see reference 1. The solutions are compared in Figure 7.
[1] Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, Third Edition, McGraw-Hill, 1970, pp. 94-95.

Figure 3. Stresses on the horizontal symmetry line solved using 4-node elements

Figure 4. Stresses on the horizontal symmetry line solved using 9-node elements

Figure 5. Stresses on the vertical symmetry line solved using 4-node elements

Figure 6. Stresses on the vertical symmetry line solved using 9-node elements
Page $\mathbf{4}$ of 5

Figure 7. τ_{zz} on the horizontal symmetry line

MIT OpenCourseWare
http://ocw.mit.edu

2.094 Finite Element Analysis of Solids and Fluids II

 Spring 2011For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

