Reading assignment: Chapters 10, 11
We have the solutions $0<\underbrace{\lambda_{1}}_{\phi_{1}} \leq \underbrace{\lambda_{2}}_{\phi_{2}} \leq \ldots \leq \underbrace{\lambda_{n}}_{\phi_{n}}$. Recall that:

$$
\begin{equation*}
\boldsymbol{K} \boldsymbol{\phi}_{i}=\lambda_{i} \boldsymbol{M} \boldsymbol{\phi}_{i} \tag{1}
\end{equation*}
$$

In summary, a necessary and sufficient condition for ϕ_{i} is that Eq. (1) is satisfied. The orthogonality conditions are not sufficient, unless $q=n$. In other words, vectors exist which are \boldsymbol{K} - and \boldsymbol{M}-orthogonal, but are not eigenvectors of the problem.

$$
\begin{gather*}
\boldsymbol{\Phi}=\left[\begin{array}{lll}
\phi_{1} & \ldots & \phi_{n}
\end{array}\right] \tag{2}\\
\boldsymbol{\Phi}^{\boldsymbol{T}} \boldsymbol{M} \boldsymbol{\Phi}=\boldsymbol{I} \quad ; \quad \boldsymbol{\Phi}^{\boldsymbol{T}} \boldsymbol{K} \boldsymbol{\Phi}=\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
\lambda_{1} & & \text { zeros } \\
& \ddots & \\
\text { zeros } & & \lambda_{n}
\end{array}\right] \tag{3}
\end{gather*}
$$

Assume we have an $n \times q$ matrix \boldsymbol{P} which gives us

$$
\boldsymbol{P}^{\boldsymbol{T}} \boldsymbol{M} \boldsymbol{P}=\underset{q \times q}{\boldsymbol{I}} \quad ; \quad \boldsymbol{P}^{\boldsymbol{T}} \boldsymbol{K} \boldsymbol{P}=\underset{q \times q}{\boldsymbol{A}} \rightarrow \text { diagonal matrix }
$$

Is $a_{i i}$ necessarily equal to λ_{i} ?

$$
\left[\begin{array}{ccc}
a_{11} & & \text { zeros } \\
& a_{22} & \\
\text { zeros } & & \ddots
\end{array}\right]
$$

If $q=n$, then $\boldsymbol{A}=\boldsymbol{\Lambda}, \boldsymbol{P}=\boldsymbol{\Phi}$ with some need for rearranging. If $q<n$, then \boldsymbol{P} may contain eigenvectors (but not necessarily), and \boldsymbol{A} may contain eigenvalues.

Rayleigh-Ritz Method

This method is used to calculate approximate eigenvalues and eigenvectors.

$$
\begin{aligned}
& \rho(\boldsymbol{v})=\frac{\boldsymbol{v}^{T} \boldsymbol{K} \boldsymbol{v}}{\boldsymbol{v}^{T} \boldsymbol{M} \boldsymbol{v}} \\
& \lambda_{1} \leq \rho(\boldsymbol{v}) \leq \lambda_{n}
\end{aligned}
$$

λ_{1} is the lowest eigenvalue, and λ_{n} is the highest eigenvalue of the system. λ_{1} is related to the least strain energy that can be stored with $\boldsymbol{v}^{T} \boldsymbol{M} \boldsymbol{v}=1$:

$$
\boldsymbol{\phi}_{1}^{T} \boldsymbol{K} \boldsymbol{\phi}_{1}=\lambda_{1} \quad\left(\text { if } \boldsymbol{\phi}_{1}^{T} \boldsymbol{M} \boldsymbol{\phi}_{1}=1\right)
$$

Note that twice the strain energy is obtained when the system is subjected to ϕ_{1}. If the second pick for \boldsymbol{v} gives a smaller value of $\rho(\boldsymbol{v})$, then the second pick is a better approximation to ϕ_{1}.
Assume $\overline{\boldsymbol{\phi}}=\sum_{i=1}^{q} \boldsymbol{\psi}_{i} x_{i}$, and the Ritz vectors $\boldsymbol{\psi}_{i}$ are linearly independent. Also, $\boldsymbol{\Psi}=\left[\boldsymbol{\psi}_{1} \ldots \boldsymbol{\psi}_{q}\right]$. The x_{i} will be selected to minimize $\rho(\bar{\phi})$. Hence, calculate $\frac{\partial}{\partial x_{i}} \rho(\bar{\phi})=0$. (See Chapter 10.) The result is

$$
\begin{gather*}
\tilde{\boldsymbol{K}} \boldsymbol{x}=\rho \tilde{\boldsymbol{M}} \boldsymbol{x} \tag{4}\\
\tilde{\boldsymbol{K}}=\boldsymbol{\Psi}^{\boldsymbol{T}} \boldsymbol{K} \boldsymbol{\Psi} \quad ; \quad \tilde{\boldsymbol{M}}=\boldsymbol{\Psi}^{\boldsymbol{T}} \boldsymbol{M} \boldsymbol{\Psi} \tag{5}
\end{gather*}
$$

We solve Eq. (4) to obtain $\rho_{1}, \rho_{2}, \ldots, \rho_{q}$ and $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{q}$. Then our approximation to $\lambda_{1}, \ldots, \lambda_{q}$ is given by $\rho_{1}, \ldots, \rho_{q}$.

$$
\begin{gathered}
\lambda_{1} \leq \rho_{1} \quad ; \quad \lambda_{2} \leq \rho_{2} \quad ; \quad \lambda_{q} \leq \rho_{q} \\
\bar{\phi}_{1} \approx \phi_{1} \quad ; \quad \bar{\phi}_{2} \approx \phi_{2} \quad ; \quad \text { etc. }
\end{gathered}
$$

where $\left[\underset{n \times q}{\left.\overline{\boldsymbol{\phi}}_{1} \ldots \overline{\boldsymbol{\phi}}_{q}\right]}=\underset{n \times q}{\boldsymbol{\Psi}}\left[\underset{q \times q}{ }\left[\boldsymbol{x}_{1} \ldots \boldsymbol{x}_{q}\right]\right.\right.$.
If the q Ritz vectors span the subspace given by $\phi_{1}, \ldots, \phi_{q}$, then we obtain $\left(\lambda_{1} \ldots \lambda_{q}\right)$ and $\left(\phi_{1} \ldots \phi_{q}\right)$. Pictorially, an example:

If $\boldsymbol{\psi}_{1}$ and $\boldsymbol{\psi}_{2}$ are in the $x-y$ plane, then by the Rayleigh-Ritz analysis we get $\boldsymbol{\phi}_{1}, \boldsymbol{\phi}_{2}$. Major shortcoming: in general, we do not know the accuracy of $\left(\rho_{i}, \bar{\phi}_{i}\right)$.

The Subspace Iteration Method

Pick $\underset{n \times q}{\boldsymbol{X}_{1}}$, then calculate for $k=1,2,3, \ldots$

$$
\begin{equation*}
\boldsymbol{K} \overline{\boldsymbol{X}}_{k+1}=\boldsymbol{M} \boldsymbol{X}_{k} \tag{a}
\end{equation*}
$$

This is inverse iteration with q vectors. Now perform the Rayleigh-Ritz solution:

$$
\begin{gather*}
\boldsymbol{K}_{k+1}=\overline{\boldsymbol{X}}_{k+1}^{T} \boldsymbol{K} \overline{\boldsymbol{X}}_{k+1} \quad ; \quad \boldsymbol{M}_{k+1}=\overline{\boldsymbol{X}}_{k+1}^{T} \boldsymbol{M} \overline{\boldsymbol{X}}_{k+1} \tag{b}\\
\boldsymbol{K}_{k+1} \boldsymbol{Q}_{k+1}=\boldsymbol{M}_{k+1} \boldsymbol{Q}_{k+1} \boldsymbol{\Lambda}_{k+1} \tag{c}
\end{gather*}
$$

$\boldsymbol{K}_{k+1}, \boldsymbol{M}_{k+1}$, and \boldsymbol{Q}_{k+1} have dimensions $q \times q$. Recall that we have $\boldsymbol{K} \boldsymbol{\Phi}=\boldsymbol{M} \boldsymbol{\Phi} \boldsymbol{\Lambda}$ from Eq. (1). We then have

$$
\begin{equation*}
\boldsymbol{Q}_{k+1}^{T} \boldsymbol{K}_{k+1} \boldsymbol{Q}_{k+1}=\boldsymbol{\Lambda}_{k+1} \quad ; \quad \boldsymbol{Q}_{k+1}^{T} \boldsymbol{M}_{k+1} \boldsymbol{Q}_{k+1}=\boldsymbol{I} \tag{d}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\boldsymbol{X}_{k+1}=\overline{\boldsymbol{X}}_{k+1} \boldsymbol{Q}_{k+1} \tag{e}
\end{equation*}
$$

Equations (b), (c), and (e) correspond to the use of the Rayleigh-Ritz method.

Then, provided the vectors in \boldsymbol{X}_{1} are not \boldsymbol{M}-orthogonal to the eigenvectors we seek, we have (with "good" ordering) that

$$
\begin{aligned}
& \boldsymbol{\Lambda}_{k+1} \rightarrow\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{q}
\end{array}\right] \\
& \boldsymbol{X}_{k+1} \rightarrow\left[\begin{array}{lll}
\boldsymbol{\phi}_{1} & \ldots & \boldsymbol{\phi}_{q}
\end{array}\right]
\end{aligned}
$$

In practice, we use q vectors to calculate the p lowest eigenvalues, with (say) $q=2 p$. In fact, the convergence rate of the vectors is given by $\frac{\lambda_{i}}{\lambda_{q+1}}$.
If $p=2$ and we have a multiplicity of 5 (or higher), $q=2 p$ corresponds to not enough vectors. Ideally, we want λ_{q+1} to be significantly larger than λ_{p}, so that $\frac{\lambda_{i}}{\lambda_{q+1}}$ is much less than 1 for $i=1, \ldots, p$. The "quite conservative" way is to use

$$
q=\max (2 p, p+8)
$$

The textbook gives $q=\min (2 p, p+8)$, which can also be used (apply the Sturm sequence check, see textbook); it will use less storage, but will generally need more iterations. For modern computers (specifically with parallel processing), the above formula for q is frequently more effective.

Notice that $\boldsymbol{X}_{k+1}^{T} \boldsymbol{M} \boldsymbol{X}_{k+1}=\boldsymbol{I}$ because from (e),

$$
\boldsymbol{Q}_{k+1}^{T} \underbrace{\overline{\boldsymbol{X}}_{k+1}^{T} \boldsymbol{M} \overline{\boldsymbol{X}}_{k+1}}_{\boldsymbol{M}_{k+1}} \boldsymbol{Q}_{k+1}=\boldsymbol{I}
$$

MIT OpenCourseWare
http://ocw.mit.edu
2.092 / 2.093 Finite Element Analysis of Solids and Fluids I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

