2.092/2.093 — Finite Element Analysis of Solids & Fluids I

Lecture 23 - Solution of
$$K\phi = \lambda M\phi$$

Prof. K. J. Bathe

MIT OpenCourseWare

Fall '09

Reading assignment: Chapters 10, 11

We have the solutions $0 < \underbrace{\lambda_1}_{\phi_1} \leq \underbrace{\lambda_2}_{\phi_2} \leq \ldots \leq \underbrace{\lambda_n}_{\phi_n}$. Recall that: $\mathbf{K}\phi_i = \lambda_i \mathbf{M}\phi_i$ (1)

In summary, a necessary and sufficient condition for ϕ_i is that Eq. (1) is satisfied. The orthogonality conditions are **not** sufficient, unless q = n. In other words, vectors exist which are K- and M-orthogonal, but are not eigenvectors of the problem.

$$\boldsymbol{\Phi} = \left[\begin{array}{ccc} \boldsymbol{\phi}_1 & \dots & \boldsymbol{\phi}_n \end{array} \right] \tag{2}$$

$$\Phi^{T} M \Phi = I \quad ; \quad \Phi^{T} K \Phi = \Lambda = \begin{bmatrix} \lambda_{1} & \text{zeros} \\ & \ddots & \\ \text{zeros} & \lambda_{n} \end{bmatrix}$$
(3)

Assume we have an $n \times q$ matrix \boldsymbol{P} which gives us

$$P^T M P = \prod_{q \times q} \quad ; \quad P^T K P = \underset{q \times q}{A} \to$$
diagonal matrix

Is a_{ii} necessarily equal to λ_i ?

$$\begin{array}{c} a_{11} & \text{zeros} \\ & a_{22} \\ \\ \text{zeros} & \ddots \end{array}$$

If q = n, then $\mathbf{A} = \mathbf{\Lambda}$, $\mathbf{P} = \mathbf{\Phi}$ with some need for rearranging. If q < n, then \mathbf{P} may contain eigenvectors (but not necessarily), and \mathbf{A} may contain eigenvalues.

Rayleigh-Ritz Method

This method is used to calculate approximate eigenvalues and eigenvectors.

$$\rho(\boldsymbol{v}) = \frac{\boldsymbol{v}^T \boldsymbol{K} \boldsymbol{v}}{\boldsymbol{v}^T \boldsymbol{M} \boldsymbol{v}}$$
$$\lambda_1 \le \rho(\boldsymbol{v}) \le \lambda_n$$

 λ_1 is the lowest eigenvalue, and λ_n is the highest eigenvalue of the system. λ_1 is related to the least strain energy that can be stored with $v^T M v = 1$:

Lecture 23

Note that twice the strain energy is obtained when the system is subjected to ϕ_1 . If the second pick for v gives a smaller value of $\rho(v)$, then the second pick is a better approximation to ϕ_1 .

Assume $\overline{\phi} = \sum_{i=1}^{q} \psi_i x_i$, and the Ritz vectors ψ_i are linearly independent. Also, $\Psi = [\psi_1 \dots \psi_q]$. The x_i will be selected to minimize $\rho(\overline{\phi})$. Hence, calculate $\frac{\partial}{\partial x_i}\rho(\overline{\phi}) = 0$. (See Chapter 10.) The result is

$$\tilde{K}x = \rho \tilde{M}x \tag{4}$$

$$\tilde{K} = \Psi^T K \Psi$$
; $\tilde{M} = \Psi^T M \Psi$ (5)

We solve Eq. (4) to obtain $\rho_1, \rho_2, \ldots, \rho_q$ and x_1, x_2, \ldots, x_q . Then our approximation to $\lambda_1, \ldots, \lambda_q$ is given by ρ_1, \ldots, ρ_q .

$$\begin{split} \lambda_1 &\leq \rho_1 \quad ; \quad \lambda_2 \leq \rho_2 \quad ; \quad \lambda_q \leq \rho_q \\ \overline{\boldsymbol{\phi}}_1 &\approx \boldsymbol{\phi}_1 \quad ; \quad \overline{\boldsymbol{\phi}}_2 \approx \boldsymbol{\phi}_2 \quad ; \quad \text{etc.} \end{split}$$

where $\left[\overline{\phi}_{1}\ldots\overline{\phi}_{q}\right] = \underset{n \times q}{\Psi} [x_{1}\ldots x_{q}].$

If the q Ritz vectors span the subspace given by ϕ_1, \ldots, ϕ_q , then we obtain $(\lambda_1 \ldots \lambda_q)$ and $(\phi_1 \ldots \phi_q)$. Pictorially, an example:

If ψ_1 and ψ_2 are in the x-y plane, then by the Rayleigh-Ritz analysis we get ϕ_1 , ϕ_2 . Major shortcoming: in general, we do not know the accuracy of $(\rho_i, \overline{\phi}_i)$.

The Subspace Iteration Method

Pick X_1 , then calculate for k = 1, 2, 3, ...

$$K\overline{X}_{k+1} = MX_k \tag{a}$$

This is inverse iteration with q vectors. Now perform the Rayleigh-Ritz solution:

$$\boldsymbol{K}_{k+1} = \overline{\boldsymbol{X}}_{k+1}^T \boldsymbol{K} \overline{\boldsymbol{X}}_{k+1} \quad ; \quad \boldsymbol{M}_{k+1} = \overline{\boldsymbol{X}}_{k+1}^T \boldsymbol{M} \overline{\boldsymbol{X}}_{k+1} \tag{b}$$

$$\boldsymbol{K}_{k+1}\boldsymbol{Q}_{k+1} = \boldsymbol{M}_{k+1}\boldsymbol{Q}_{k+1}\boldsymbol{\Lambda}_{k+1} \tag{c}$$

 K_{k+1} , M_{k+1} , and Q_{k+1} have dimensions $q \times q$. Recall that we have $K\Phi = M\Phi\Lambda$ from Eq. (1). We then have

$$\boldsymbol{Q}_{k+1}^T \boldsymbol{K}_{k+1} \boldsymbol{Q}_{k+1} = \boldsymbol{\Lambda}_{k+1} \quad ; \quad \boldsymbol{Q}_{k+1}^T \boldsymbol{M}_{k+1} \boldsymbol{Q}_{k+1} = \boldsymbol{I}$$
(d)

Finally,

$$\boldsymbol{X}_{k+1} = \overline{\boldsymbol{X}}_{k+1} \boldsymbol{Q}_{k+1} \tag{e}$$

Equations (b), (c), and (e) correspond to the use of the Rayleigh-Ritz method.

Then, provided the vectors in X_1 are not M-orthogonal to the eigenvectors we seek, we have (with "good" ordering) that

$$egin{array}{cccc} oldsymbol{\Lambda}_{k+1}
ightarrow egin{bmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_q \end{bmatrix} \ egin{array}{ccccc} oldsymbol{X}_{k+1}
ightarrow egin{bmatrix} \phi_1 & \dots & \phi_q \end{bmatrix}$$

In practice, we use q vectors to calculate the p lowest eigenvalues, with (say) q = 2p. In fact, the convergence rate of the vectors is given by $\frac{\lambda_i}{\lambda_{q+1}}$.

If p = 2 and we have a multiplicity of 5 (or higher), q = 2p corresponds to not enough vectors. Ideally, we want λ_{q+1} to be significantly larger than λ_p , so that $\frac{\lambda_i}{\lambda_{q+1}}$ is much less than 1 for $i = 1, \ldots, p$. The "quite conservative" way is to use

$$q = \max(2p, p+8)$$

The textbook gives $q = \min(2p, p+8)$, which can also be used (apply the Sturm sequence check, see textbook); it will use less storage, but will generally need more iterations. For modern computers (specifically with parallel processing), the above formula for q is frequently more effective.

Notice that $\boldsymbol{X}_{k+1}^T \boldsymbol{M} \boldsymbol{X}_{k+1} = \boldsymbol{I}$ because from (e),

$$oldsymbol{Q}_{k+1}^T \underbrace{\overline{oldsymbol{X}}_{k+1}^T oldsymbol{M} \overline{oldsymbol{X}}_{k+1}}_{oldsymbol{M}_{k+1}} oldsymbol{Q}_{k+1} = oldsymbol{I}$$

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I $_{\mbox{Fall 2009}}$

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.