Reading assignment: Chapters 10 and 11

$$
\begin{equation*}
M \ddot{U}+K U=\boldsymbol{R} \tag{1}
\end{equation*}
$$

Aside: \boldsymbol{M} could have zero masses. Then we use Gauss elimination on \boldsymbol{K} to remove zero-mass DOFs, but we denote the final matrix still as \boldsymbol{K}. Then, in free vibrations:

$$
\begin{equation*}
M \ddot{\boldsymbol{U}}+\boldsymbol{K} \boldsymbol{U}=\mathbf{0} \tag{2}
\end{equation*}
$$

where now \boldsymbol{M} and \boldsymbol{K} are assumed to be positive definite matrices, i.e. $\tilde{\boldsymbol{U}}^{T} \boldsymbol{M} \tilde{\boldsymbol{U}}>0, \tilde{\boldsymbol{U}}^{T} \boldsymbol{K} \tilde{\boldsymbol{U}}>0$ for any $\tilde{\boldsymbol{U}} \neq 0$. Then, we obtain the eigenvalue problem

$$
\begin{equation*}
\boldsymbol{K} \boldsymbol{\phi}=\lambda \boldsymbol{M} \boldsymbol{\phi} \quad \rightarrow \quad \boldsymbol{K} \boldsymbol{\phi}_{i}=\lambda_{i} \boldsymbol{M} \boldsymbol{\phi}_{i} \tag{A}
\end{equation*}
$$

where $0<\underbrace{\lambda_{1}}_{\phi_{1}} \leq \underbrace{\lambda_{2}}_{\phi_{2}} \leq \ldots \leq \underbrace{\lambda_{n}}_{\phi_{n}}$.
Recall:

$$
\begin{gathered}
\boldsymbol{\phi}_{i}^{T} \boldsymbol{M} \boldsymbol{\phi}_{j}=\delta_{i j} \\
\boldsymbol{\phi}_{i}^{T} \boldsymbol{K} \boldsymbol{\phi}_{j}=\omega_{i}^{2} \delta_{i j}=\lambda_{i} \delta_{i j}
\end{gathered}
$$

The Case of Multiple Eigenvalues

Assume $\lambda_{1}=\lambda_{2}<\lambda_{3}$, i.e. λ_{1} has a multiplicity of $2(m=2), \phi_{1}$ and ϕ_{2} are two eigenvectors for λ_{1} and λ_{2}, and $\phi_{1} \neq \phi_{2}$. Then, we have

$$
\begin{align*}
& \boldsymbol{K} \alpha \boldsymbol{\phi}_{1}=\lambda_{1} \boldsymbol{M} \alpha \boldsymbol{\phi}_{1} \tag{3}\\
& \boldsymbol{K} \beta \boldsymbol{\phi}_{2}\left.=\lambda_{1} \boldsymbol{M} \beta \boldsymbol{\phi}_{2} \text { any constant }\right) \tag{4}\\
&(\beta: \text { any constant })
\end{align*}
$$

Hence,

$$
\begin{equation*}
\boldsymbol{K}\left(\alpha \boldsymbol{\phi}_{1}+\beta \boldsymbol{\phi}_{2}\right)=\lambda_{1} \boldsymbol{M}\left(\alpha \boldsymbol{\phi}_{1}+\beta \boldsymbol{\phi}_{2}\right) \tag{5}
\end{equation*}
$$

Eq. (5) shows $\alpha \phi_{1}+\beta \phi_{2}=\tilde{\phi}$ is also an eigenvector corresponding to λ_{1} ! We can change the length of the eigenvector so that for some γ,

$$
(\gamma \tilde{\boldsymbol{\phi}})^{T} \boldsymbol{M}(\gamma \tilde{\boldsymbol{\phi}})=1
$$

Recall we want $\ddot{x}_{i}+\omega_{i}^{2} x_{i}=r_{i}$, having set the mass m to 1 since $\boldsymbol{\phi}_{i}^{T} \boldsymbol{M} \boldsymbol{\phi}_{j}=\delta_{i j}$.
If the eigenvalues for the system (A) are distinct, the eigenvectors are unique. Here, we have a two dimensional eigenspace $\left(\lambda_{1}=\lambda_{2}\right)$. Any two \boldsymbol{M}-orthogonal vectors in this space are eigenvectors and could be used as mode shapes.

Gram-Schmidt (see textbook)

Orthogonalization is used to obtain \boldsymbol{M}-orthogonal vectors. For an eigenvalue of multiplicity m, we have an eigenspace of dimension m and can always find $m \boldsymbol{M}$-orthogonal vectors that are in this eigenspace. We need orthogonality to decouple Eq. (2). Next, we will discuss some solution techniques.

Inverse Iteration

Once we have eigenvectors with $\boldsymbol{\phi}_{i}^{T} \boldsymbol{M} \boldsymbol{\phi}_{j}=\delta_{i j}$, we could simply use $\boldsymbol{\phi}_{i}^{T} \boldsymbol{K} \boldsymbol{\phi}_{j}=\lambda_{i} \delta_{i j}$ to obtain λ_{i}.
Do we need to iterate on $\boldsymbol{K} \boldsymbol{\phi}=\lambda(\boldsymbol{M} \boldsymbol{\phi})$ to get $\boldsymbol{K} \phi_{i}=\lambda_{i} \boldsymbol{M} \phi_{i}$? Since for the general case there are no explicit formulas available to calculate the roots of $p(\lambda)$ when the order of p is greater than 4 , an iterative solution method has to be used.

Iteration

Assume $\lambda_{1}>0$. We pick \boldsymbol{x}_{1} and use for $k=1,2, \ldots$

$$
\begin{gather*}
\boldsymbol{K} \overline{\boldsymbol{x}}_{k+1}=\boldsymbol{M} \boldsymbol{x}_{k} \tag{a}\\
\boldsymbol{x}_{k+1}=\frac{\overline{\boldsymbol{x}}_{k+1}}{\left(\overline{\boldsymbol{x}}_{k+1}^{T} \boldsymbol{M} \overline{\boldsymbol{x}}_{k+1}\right)^{\frac{1}{2}}}
\end{gather*}
$$

Since $\lambda_{1}>0, \boldsymbol{K}$ is positive definite and we can solve Eq. (a). We want \boldsymbol{x}_{k+1} to satisfy the mass orthonormality relation $\overline{\boldsymbol{x}}_{k+1}^{T} \boldsymbol{M} \overline{\boldsymbol{x}}_{k+1}=1$. If we assume $\boldsymbol{x}_{1}^{T} \boldsymbol{M} \boldsymbol{\phi}_{1} \neq 0$, then

$$
\begin{gathered}
\boldsymbol{x}_{k+1} \rightarrow \boldsymbol{\phi}_{1} \text { as } k \rightarrow \infty \\
\lambda_{1}=\boldsymbol{\phi}_{1}^{T} \boldsymbol{K} \boldsymbol{\phi}_{1}, \boldsymbol{\phi}_{1}^{T} \boldsymbol{M} \boldsymbol{\phi}_{1}=1
\end{gathered}
$$

Proof: Consider

$$
\begin{equation*}
\boldsymbol{K} \boldsymbol{x}_{k+1}=\boldsymbol{M} \boldsymbol{x}_{k} \tag{B}
\end{equation*}
$$

We see that (B) is equivalent to working with vectors \boldsymbol{z}_{k+1} and \boldsymbol{z}_{k}.

$$
\boldsymbol{\Phi} \boldsymbol{z}_{k+1}=\boldsymbol{x}_{k+1} \quad, \quad \boldsymbol{\Phi} \boldsymbol{z}_{k}=\boldsymbol{x}_{k}
$$

Substitute into (B):

$$
\begin{gather*}
\boldsymbol{\Phi}^{T} \boldsymbol{K} \boldsymbol{\Phi} \boldsymbol{z}_{k+1}=\boldsymbol{\Phi}^{T} \boldsymbol{M} \boldsymbol{\Phi} \boldsymbol{z}_{k} \\
{\left[\begin{array}{cccc}
\lambda_{1} & & & \text { zeros } \\
& \lambda_{2} & & \\
& & \ddots & \\
\text { zeros } & & & \lambda_{n}
\end{array}\right] \boldsymbol{z}_{k+1}=\boldsymbol{z}_{k}} \tag{C}
\end{gather*}
$$

$$
\text { Working on }(\mathrm{C}) \text { is equivalent to working on (B) }
$$

Next, iterate with (C). Assume:

$$
\begin{gathered}
\boldsymbol{z}_{1}^{T}=\left[\begin{array}{lllll}
1 & 1 & 1 & \ldots & 1
\end{array}\right] \\
{\left[\begin{array}{cccc}
\lambda_{1} & & & \text { zeros } \\
& \lambda_{2} & & \\
& & \ddots & \\
\text { zeros } & & & \lambda_{n}
\end{array}\right] \boldsymbol{z}_{2}=\boldsymbol{z}_{1}}
\end{gathered}
$$

Then we find

$$
\boldsymbol{z}_{2}^{T}=\left[\begin{array}{lllll}
\frac{1}{\lambda_{1}} & \frac{1}{\lambda_{2}} & \frac{1}{\lambda_{3}} & \cdots & \frac{1}{\lambda_{n}}
\end{array}\right]
$$

After l iterations,

$$
\boldsymbol{z}_{l+1}^{T}=\left[\begin{array}{llll}
\left(\frac{1}{\lambda_{1}}\right)^{l} & \left(\frac{1}{\lambda_{2}}\right)^{l} & \left(\frac{1}{\lambda_{3}}\right)^{l} & \ldots \\
\left(\frac{1}{\lambda_{n}}\right)^{l}
\end{array}\right]
$$

Only the direction of the vector is important.
Assume $\lambda_{1}<\lambda_{2}$. Multiply \boldsymbol{z}_{l+1} by $\left(\lambda_{1}\right)^{l}$ to obtain a new z_{l+1} :

$$
\boldsymbol{z}_{l+1}^{T}=\left[\begin{array}{lllll}
1 & \left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{l} & \left(\frac{\lambda_{1}}{\lambda_{3}}\right)^{l} & \ldots & \left(\frac{\lambda_{1}}{\lambda_{n}}\right)^{l}
\end{array}\right]
$$

This \boldsymbol{z}_{l+1}^{T} converges to $\left[\begin{array}{lllll}1 & 0 & 0 & \ldots & 0\end{array}\right]$ as $l \rightarrow \infty$.
Note that if \boldsymbol{z}_{1} is orthogonal to $\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]$, we will never reach the eigenvector corresponding to λ_{1}.
Finally, assume $\lambda_{1}=\lambda_{2}<\lambda_{3}$. Then we obtain

$$
\boldsymbol{z}_{l+1}^{T}=\left[\begin{array}{lllll}
1 & 1 & 0 & \ldots & 0
\end{array}\right]
$$

To obtain the 2 nd eigenvector for $\lambda_{1}=\lambda_{2}$, choose a starting vector \boldsymbol{x}_{1} that is \boldsymbol{M}-orthogonal to $\boldsymbol{\phi}_{1}$ and enforce this orthogonality in each iteration. To avoid round-off error, see the textbook.

In practice, the inverse iteration method is hardly used by itself, but rather as an ingredient in a more complex scheme. The next lecture introduces the widely used "subspace iteration method" which employs the inverse iteration method to efficiently solve for the first few lowest frequencies/eigenvalues and modeshapes of large systems.

MIT OpenCourseWare
http://ocw.mit.edu
2.092 / 2.093 Finite Element Analysis of Solids and Fluids I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

