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2.092/2.093 — Finite Element Analysis of Solids & Fluids I Fall ‘09 

Lecture 18 - Modeling for Dynamic Analysis & Solution 

Prof. K. J. Bathe MIT OpenCourseWare 

From last lecture, 
MU ¨ + CU̇ + KU = R(t) ; 0U , 0U̇ (1) 

KU = FI , the internal force calculated from the element stresses. 

Mode Superposition 

The mode superposition method transforms the displacements so as to decouple the governing equation (1). 
Thus, consider: 

n 
U = Σ φixi (2) 

i=1 

We start with the general solution, where φi is an eigenvector. Then Eq. (1) becomes 

ẍi + 2ξiωiẋi + ωi 
2 xi = φi

T R = ri (i = 1, . . . , n) (3) 

For damping, assume a diagonal C matrix: ⎤⎡ 

ΦT CΦ = 
⎢⎢⎣ 

. . . zeros 
2ξiωi 

.
zeros . . 

⎥⎥⎦ 

Φ = φ1 . . . φn 

0The initial conditions are xi = φi
T M 0U , 0ẋi = φT

i M 0U̇ . We consider and solve n such single-DOF 
systems: 

The mass m is 1, and the stiffness is ωi 
2 . In Eq. (1) we have fully coupled equations. By performing the 

transformation, we obtain n decoupled equations. ri can be a complicated function of time. 

Direct Integration 

In direct integration, no transformation is performed. 

I. Explicit Method: Central Difference Method 

The explicit method evaluates Eq. (1) at time t to obtain the solution at time t + Δt. Assume we 
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already have the values for tU , t−ΔtU , t−2ΔtU , . . . Consider the following three linearly independent 
equations: 

M tU ¨ + C tU̇ + K tU = tR (4) 
tU ¨ = Δ

1 
t2 

t+ΔtU − 2 tU + t−ΔtU (5) 
tU̇ = 1 t+ΔtU − t−ΔtU (6) (2Δt) 

These equations can be solved for t+ΔtU . Assume C = 0 and M = diagonal mass matrix Ml, 

1 
Ml

t+ΔtU = tR̂ (7) 
(Δt)2 

All known quantities go to the right-hand side into tR̂. Ml is a diagonal matrix, hence we have 

t+ΔtUi 
(Δt)2 

t ˆ= Ri(Ml)ii 

for every ith component. If (Ml)ii is zero, the equation can not be solved. This corresponds to an 
infinite frequency. For the method to be stable, we must have 

The Condition of Stability: Δt ≤ Δtcr = 
T

π 
n = 

ω

2 

n 
(8) 

If C is diagonal as well, the method still works in the same way! Note that K only appears in the 
right-hand side of the equation. 

II. Implicit Method: Trapezoidal Rule 

An implicit method evaluates Eq. (1) at time t + Δt to obtain the solution at time t + Δt. 

M t+ΔtU ¨ + C t+ΔtU̇ + K t+ΔtU = t+ΔtR (9) 
t+ΔtU̇ = tU̇ + 12 

t+ΔtU ¨ + tU ¨ Δt (10) 

The last term in Eq. (10) tells why the trapezoidal rule is also called the constant average acceleration 
method. 

We need one more linearly independent equation to solve the system. 

t+ΔtU = tU + Δt tU̇ +
1 � 

t+ΔtU ¨ + tU ¨ 
� 

(Δt)2 (11) 
4 

Here, the last two terms are incremental displacements. Substituting Eqs. (10) and (11) into (9): 

(c1M + c2C + K) t+ΔtU = t+ΔtR̂ (12) 

where c1 and c2 are constants, and are given in the textbook (see Sections 9.1-9.3 for more information). 
t+ΔtR̂ is obtained from known quantities. The larger Δt is, the smaller c1M + c2C becomes. 

2 



� 

Lecture 18	 Modeling for Dynamic Analysis & Solution 2.092/2.093, Fall ‘09 

This method is unconditionally stable. In other words, there is no condition on the time step size to 
have stability. (Not all implicit methods are unconditionally stable.) In numerical analysis, stability 
and accuracy are distinct requirements. Stability is the first fundamental requirement. But even if the 
scheme is stable, the result will not be accurate unless a sufficiently small time step has been used. 

For conditionally stable explicit methods The time step Δt is chosen for stability and accuracy. •	 → 

For unconditionally stable implicit methods The time step Δt is chosen for accuracy. •	 → 

How to Construct C 

Rayleigh damping is widely used. For the C matrix, assume 

C = αM + βK 

where α and β are constants to be selected. 

φT
i Cφj = 2ξiωiδij	

if i = j, δij = 1 
(13) if i =� j, δij = 0 

For two values of Eq. (13) we obtain 

φT
i (αM + βK) φi = 2ξiωi 

α + βωi 
2 = 2ξiωi	 (14) 

Let’s use i = 1 and i = 2. We get two independent equations: 

α + βω1
2 = 2ξ1ω1 (15) 

α + βω2
2 = 2ξ2ω2 

which we can solve for α and β. (Obviously, we must have ω1 =� ω2.) Then we use Eq. (14) to estimate 
what damping ratios are implicitly assumed in the remaining frequencies. 

1 � � 
ξi = α + βωi 

2 

2ωi 

α β 
= + ωi2ωi 2 

Hence, 
α β 

ξi = + ωi, i = 3, 4, . . . , n	 (16) 
2ωi 2 

where 2
α
ωi 

is the (low-frequency) mass-proportional damping, and β 
2 ωi is the (high-frequency) stiffness-

proportional damping. See the textbook for examples on how this method may be applied when more than 
two damping ratios need to be matched approximately. 
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