2.092/2.093 — Finite Element Analysis of Solids & Fluids I Fall '09 Lecture 15 - Solution of Dynamic Equilibrium Equations Prof. K. J. Bathe MIT OpenCourseWare

In the last lecture, we described a physical setup that demonstrates the technique of Gauss elimination. We used clamps on each DOF and removed one clamp for one step of Gauss elimination.

 \otimes should be positive, and should remain positive.

Our rule: Remove clamps one at a time, in the order we would perform Gauss elimination. If there is "a" clamp "seeing" no more stiffness after having removed some clamp(s), the structure is unstable.

Example

All diagonal terms are positive. However, there will be a zero diagonal entry after Gauss elimination has been performed for the 3rd DOF.

after 3 Gauss elimination of u1, u2 and u3, u4 sees no stiffness

Solution of dynamic equilibrium equations

Consider a system with n DOFs:

$$\boldsymbol{M}\ddot{\boldsymbol{U}} + \boldsymbol{C}\dot{\boldsymbol{U}} + \underbrace{\boldsymbol{K}\boldsymbol{U}}_{\boldsymbol{F}_{I}} = \boldsymbol{R}(t) \tag{1}$$

with initial conditions

$$\boldsymbol{U}\big|_{t=0} = {}^{0}\boldsymbol{U} \hspace{0.1 in} ; \hspace{0.1 in} \dot{\boldsymbol{U}}\big|_{t=0} = {}^{0}\dot{\boldsymbol{U}}$$

The term $C\dot{U}$ will be discussed later. Our methods for solving (1) are:

- Mode superposition: We first transform the equation and then integrate.
- Direct integration: We integrate the equation directly!

First, let's transform Eq. (1). Assume we use

$$\boldsymbol{U}(t) = \underset{n \times n}{\boldsymbol{P}} \quad \underset{n \times 1}{\boldsymbol{X}}(t) \tag{2}$$

The function P is independent of time. Substitute this into Eq.(1) to obtain

$$\boldsymbol{P}^{T}\boldsymbol{M}\boldsymbol{P}\ddot{\boldsymbol{X}} + \boldsymbol{P}^{T}\boldsymbol{C}\boldsymbol{P}\dot{\boldsymbol{X}} + \boldsymbol{P}^{T}\boldsymbol{K}\boldsymbol{P}\boldsymbol{X} = \boldsymbol{P}^{T}\boldsymbol{R}$$
(A)

The best P matrix would diagonalize the matrix, thereby decoupling the equations. To obtain a "wonderful" P, consider

$$MU + KU = 0$$
 (free vibration)
 $U = \phi \sin \omega (t - t_0)$

Then,

$$-\omega^2 \boldsymbol{M}\boldsymbol{\phi}\sin\omega\left(t-t_0\right) + \boldsymbol{K}\boldsymbol{\phi}\sin\omega\left(t-t_0\right) = \boldsymbol{0}$$
 (a)

For (a) to hold,

$$oldsymbol{K} oldsymbol{\phi} = \omega^2 oldsymbol{M} oldsymbol{\phi} \ oldsymbol{(K} - \omega^2 oldsymbol{M}) oldsymbol{\phi} = oldsymbol{0}$$

Let $\omega^2 = \lambda$. We have a generalized eigenvalue problem. We must have det $(\mathbf{K} - \lambda \mathbf{M}) = 0$, and we find the solution for λ from the roots of the characteristic polynomial

$$p(\lambda) = a_0 + a_1\lambda + a_2\lambda^2 + \ldots + a_n\lambda^n$$

Find the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ from $p(\lambda) = 0$ and then the eigenvectors ϕ_1, \ldots, ϕ_n from

$$(\boldsymbol{K} - \lambda_i \boldsymbol{M}) \boldsymbol{\phi}_i = \boldsymbol{0}$$

Then, normalize ϕ_i so that it satisfies $\phi_i^T M \phi_i = 1$. We now have (see Chapters 2, 10)

$$0 \leq \underbrace{\omega_1^2}_{\text{for } \phi_1} \leq \underbrace{\omega_2^2}_{\text{for } \phi_2} \leq \ldots \leq \underbrace{\omega_n^2}_{\text{for } \phi_n}$$

Lecture 15

Each ϕ_i represents a mode shape, and we have

$$\boldsymbol{\phi}_i^T \boldsymbol{M} \boldsymbol{\phi}_j = \delta_{ij}$$

where δ_{ij} is the Kronecker delta, so we call $\phi_i M$ -orthogonal (or M-orthonormal, because $\phi_i^T M \phi_i = 1$). In turn, this yields

$$\boldsymbol{\phi}_i^T \boldsymbol{K} \boldsymbol{\phi}_j = \omega_i^2 \delta_{ij}$$

Physically,

Consider ϕ_1 :

$$oldsymbol{\phi}_1 \, oldsymbol{M} \, oldsymbol{\phi}_1 = 1 \ oldsymbol{\phi}_1^T oldsymbol{K} oldsymbol{\phi}_1 = \omega_1^2$$

_T η **π**

The strain energy in the beam is $\frac{1}{2}\boldsymbol{\phi}_1^T \boldsymbol{K} \boldsymbol{\phi}_1 = \frac{1}{2}\omega_1^2$. By orthonormality, also,

$$\boldsymbol{\phi}_2^T \boldsymbol{M} \boldsymbol{\phi}_1 = 0$$

 $\boldsymbol{\phi}_2^T \boldsymbol{M} \boldsymbol{\phi}_2 = 1$

and

$$\boldsymbol{\phi}_2^T \boldsymbol{K} \boldsymbol{\phi}_2 = \omega_2^2$$

Consider this simple case, for which we must solve $K\phi = \omega^2 M\phi$:

$$M = \begin{bmatrix} \times & & \\ & \times & \\ & & & \\ & & & \\ & & & \\ & & & \times \end{bmatrix}$$

Then

$$oldsymbol{M} oldsymbol{\phi} = rac{1}{\omega^2} oldsymbol{K} oldsymbol{\phi} = \kappa oldsymbol{K} oldsymbol{\phi}$$

A non-trivial solution is $\kappa = 0$, $\phi = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \omega^2 = \infty.$

Note: $\omega_1^2=0$ for rigid body motion. (No strain energy!)

Solution of Dynamic Equilibrium Equations

Now let's use $\boldsymbol{P} = [\phi_1 \quad \dots \quad \phi_n]$. Then, (A) becomes

$$\ddot{X} + P^T C P \dot{X} + \begin{bmatrix} \omega_1^2 & \text{zeros} \\ & \ddots & \\ \text{zeros} & \omega_n^2 \end{bmatrix} X = P^T R$$

For now, let's assume no damping. (If C = 0, there is no damping and the equations are decoupled.) Then, we have $\ddot{\mathbf{x}} + \mathbf{O}^2 \mathbf{Y} = \mathbf{\Phi}^T \mathbf{P}$

$$\boldsymbol{X} + \boldsymbol{\Omega}^{2} \boldsymbol{X} = \frac{\boldsymbol{\Phi}^{-1} \boldsymbol{R}}{n \times n}$$
$$\boldsymbol{\Phi} = \begin{bmatrix} \phi_{1} & \phi_{2} & \dots & \phi_{n} \end{bmatrix} \quad ; \quad \boldsymbol{\Omega}^{2} = \begin{bmatrix} \omega_{1}^{2} & \text{zeros} \\ & \ddots & \\ \text{zeros} & & \omega_{n}^{2} \end{bmatrix} \quad ; \quad \boldsymbol{X} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

So, we have

$$\ddot{x}_i + \omega_i^2 x_i = \boldsymbol{\phi}_i^T \boldsymbol{R} \quad (i = 1, \dots, n)$$

As always, we need the initial conditions ${}^{0}x_{i}$, ${}^{0}\dot{x}_{i}$ to solve.

Lecture 15

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I $_{\mbox{Fall 2009}}$

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.