In the last lecture, we described a physical setup that demonstrates the technique of Gauss elimination. We used clamps on each DOF and removed one clamp for one step of Gauss elimination.

$$
\left[\begin{array}{cccc}
\otimes & \times & \times & \times \\
\times & \otimes & \times & \times \\
\times & \times & \otimes & \times \\
\times & \times & \times & \otimes
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]
$$

\otimes should be positive, and should remain positive.
Our rule: Remove clamps one at a time, in the order we would perform Gauss elimination. If there is "a" clamp "seeing" no more stiffness after having removed some clamp(s), the structure is unstable.

Example

$$
K=\left[\begin{array}{cccccc}
\times & & & & & \\
& \times & & & & \\
& & \times & & & \\
& & & \times & & \\
& & & & \times & \\
& & & & & \times
\end{array}\right]
$$

All diagonal terms are positive. However, there will be a zero diagonal entry after Gauss elimination has been performed for the 3rd DOF.

after 3 Gauss elimination of u_{1}, u_{2} and u_{3}, u_{4} sees no stiffness

Solution of dynamic equilibrium equations

Consider a system with n DOFs:

$$
\begin{equation*}
\boldsymbol{M} \ddot{\boldsymbol{U}}+\boldsymbol{C} \dot{\boldsymbol{U}}+\underbrace{\boldsymbol{K} \boldsymbol{U}}_{\boldsymbol{F}_{I}}=\boldsymbol{R}(t) \tag{1}
\end{equation*}
$$

with initial conditions

$$
\left.\boldsymbol{U}\right|_{t=0}={ }^{0} \boldsymbol{U} \quad ;\left.\quad \dot{\boldsymbol{U}}\right|_{t=0}={ }^{0} \dot{\boldsymbol{U}}
$$

The term $\boldsymbol{C} \dot{\boldsymbol{U}}$ will be discussed later. Our methods for solving (1) are:

- Mode superposition: We first transform the equation and then integrate.
- Direct integration: We integrate the equation directly!

First, let's transform Eq. (1). Assume we use

$$
\begin{equation*}
\boldsymbol{U}(t)=\underset{n \times n}{\boldsymbol{P}} \underset{n \times 1}{\boldsymbol{X}}(t) \tag{2}
\end{equation*}
$$

The function \boldsymbol{P} is independent of time. Substitute this into Eq.(1) to obtain

$$
\begin{equation*}
\boldsymbol{P}^{T} \boldsymbol{M} \boldsymbol{P} \ddot{\boldsymbol{X}}+\boldsymbol{P}^{T} \boldsymbol{C} \boldsymbol{P} \dot{\boldsymbol{X}}+\boldsymbol{P}^{T} \boldsymbol{K} \boldsymbol{P} \boldsymbol{X}=\boldsymbol{P}^{T} \boldsymbol{R} \tag{A}
\end{equation*}
$$

The best \boldsymbol{P} matrix would diagonalize the matrix, thereby decoupling the equations. To obtain a "wonderful" \boldsymbol{P}, consider

$$
\begin{gathered}
\boldsymbol{M} \ddot{\boldsymbol{U}}+\boldsymbol{K} \boldsymbol{U}=\mathbf{0} \quad \text { (free vibration) } \\
\boldsymbol{U}=\phi \sin \omega\left(t-t_{0}\right)
\end{gathered}
$$

Then,

$$
\begin{equation*}
-\omega^{2} \boldsymbol{M} \boldsymbol{\phi} \sin \omega\left(t-t_{0}\right)+\boldsymbol{K} \boldsymbol{\phi} \sin \omega\left(t-t_{0}\right)=\mathbf{0} \tag{a}
\end{equation*}
$$

For (a) to hold,

$$
\begin{gathered}
\boldsymbol{K} \boldsymbol{\phi}=\omega^{2} \boldsymbol{M} \boldsymbol{\phi} \\
\left(\boldsymbol{K}-\omega^{2} \boldsymbol{M}\right) \boldsymbol{\phi}=\mathbf{0}
\end{gathered}
$$

Let $\omega^{2}=\lambda$. We have a generalized eigenvalue problem. We must have $\operatorname{det}(\boldsymbol{K}-\lambda \boldsymbol{M})=0$, and we find the solution for λ from the roots of the characteristic polynomial

$$
p(\lambda)=a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+a_{n} \lambda^{n}
$$

Find the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ from $p(\lambda)=0$ and then the eigenvectors $\boldsymbol{\phi}_{1}, \ldots, \boldsymbol{\phi}_{n}$ from

$$
\left(\boldsymbol{K}-\lambda_{i} \boldsymbol{M}\right) \phi_{i}=\mathbf{0}
$$

Then, normalize $\boldsymbol{\phi}_{i}$ so that it satisfies $\boldsymbol{\phi}_{i}^{T} \boldsymbol{M} \boldsymbol{\phi}_{i}=1$. We now have (see Chapters 2, 10)

$$
0 \leq \underbrace{\omega_{1}^{2}}_{\text {for } \phi_{1}} \leq \underbrace{\omega_{2}^{2}}_{\text {for } \phi_{2}} \leq \ldots \leq \underbrace{\omega_{n}^{2}}_{\text {for } \phi_{n}}
$$

Each ϕ_{i} represents a mode shape, and we have

$$
\boldsymbol{\phi}_{i}^{T} \boldsymbol{M} \boldsymbol{\phi}_{j}=\delta_{i j}
$$

where $\delta_{i j}$ is the Kronecker delta, so we call $\boldsymbol{\phi}_{i} \boldsymbol{M}$-orthogonal (or \boldsymbol{M}-orthonormal, because $\boldsymbol{\phi}_{i}^{T} \boldsymbol{M} \boldsymbol{\phi}_{i}=1$). In turn, this yields

$$
\boldsymbol{\phi}_{i}^{T} \boldsymbol{K} \boldsymbol{\phi}_{j}=\omega_{i}^{2} \delta_{i j}
$$

Physically,

Consider ϕ_{1} :

$$
\begin{gathered}
\boldsymbol{\phi}_{1}^{T} \boldsymbol{M} \boldsymbol{\phi}_{1}=1 \\
\boldsymbol{\phi}_{1}^{T} \boldsymbol{K} \boldsymbol{\phi}_{1}=\omega_{1}^{2}
\end{gathered}
$$

The strain energy in the beam is $\frac{1}{2} \boldsymbol{\phi}_{1}^{T} \boldsymbol{K} \boldsymbol{\phi}_{1}=\frac{1}{2} \omega_{1}^{2}$. By orthonormality, also,

$$
\begin{aligned}
& \boldsymbol{\phi}_{2}^{T} \boldsymbol{M} \boldsymbol{\phi}_{1}=0 \\
& \boldsymbol{\phi}_{2}^{T} \boldsymbol{M} \boldsymbol{\phi}_{2}=1
\end{aligned}
$$

and

$$
\boldsymbol{\phi}_{2}^{T} \boldsymbol{K} \boldsymbol{\phi}_{2}=\omega_{2}^{2}
$$

Consider this simple case, for which we must solve $\boldsymbol{K} \boldsymbol{\phi}=\omega^{2} \boldsymbol{M} \boldsymbol{\phi}$:

$$
\boldsymbol{M}=\left[\begin{array}{ccccc}
\times & & & & \\
& \times & & & \\
& & 0 & & \\
& & & \times & \\
& & & & \times
\end{array}\right]
$$

Then

$$
\boldsymbol{M} \boldsymbol{\phi}=\frac{1}{\omega^{2}} \boldsymbol{K} \boldsymbol{\phi}=\kappa \boldsymbol{K} \boldsymbol{\phi}
$$

A non-trivial solution is $\kappa=0, \phi=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right] \rightarrow \omega^{2}=\infty$.
Note: $\omega_{1}^{2}=0$ for rigid body motion. (No strain energy!)

Now let's use $\boldsymbol{P}=\left[\begin{array}{lll}\phi_{1} & \ldots & \phi_{n}\end{array}\right]$. Then, (A) becomes

$$
\ddot{\boldsymbol{X}}+\boldsymbol{P}^{T} \boldsymbol{C P} \dot{\boldsymbol{X}}+\left[\begin{array}{ccc}
\omega_{1}^{2} & & \text { zeros } \\
& \ddots & \\
\text { zeros } & & \omega_{n}^{2}
\end{array}\right] \boldsymbol{X}=\boldsymbol{P}^{T} \boldsymbol{R}
$$

For now, let's assume no damping. (If $\boldsymbol{C}=0$, there is no damping and the equations are decoupled.) Then, we have

$$
\begin{gathered}
\ddot{\boldsymbol{X}}+\boldsymbol{\Omega}^{2} \boldsymbol{X}=\underset{n \times n}{ }{ }^{T} \boldsymbol{R} \\
\boldsymbol{\Phi}=\left[\begin{array}{llll}
\phi_{1} & \phi_{2} & \ldots & \phi_{n}
\end{array}\right] \quad ; \quad \boldsymbol{\Omega}^{2}=\left[\begin{array}{ccc}
\omega_{1}^{2} & & \text { zeros } \\
& \ddots & \\
\operatorname{zeros} & & \omega_{n}^{2}
\end{array}\right] \quad ; \quad \boldsymbol{X}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
\end{gathered}
$$

So, we have

$$
\ddot{x}_{i}+\omega_{i}^{2} x_{i}=\boldsymbol{\phi}_{i}^{T} \boldsymbol{R} \quad(i=1, \ldots, n)
$$

As always, we need the initial conditions ${ }^{0} x_{i},{ }^{0} \dot{x}_{i}$ to solve.

MIT OpenCourseWare
http://ocw.mit.edu
2.092 / 2.093 Finite Element Analysis of Solids and Fluids I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

