2.092/2.093

FINITE ELEMENT ANALYSIS OF SOLIDS AND FLUIDS I FALL 2009

Homework 7-solution

Instructor:	Prof. K. J. Bathe	Assigned:	Session 16
TA:	Seounghyun Ham	Due:	Session 19

Problem 1 (20 points):

$$\underline{\mathbf{K}} = \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}, \ \underline{\mathbf{M}} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \ \underline{\mathbf{R}} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$$

$$^{0}\underline{\mathbf{U}}=\mathbf{0}; \overset{0}{\underline{\mathbf{U}}}=\mathbf{0}$$

Considering the eigenproblem, $\underline{K}\underline{\phi} = \omega^2 \underline{M}\underline{\phi}$

$$\omega_{1}^{2} = 1.7753, \quad \underline{\phi}_{1} = \begin{bmatrix} 0.3029\\ 0.6739 \end{bmatrix}$$
 Note: $\underline{\phi}_{i}^{T} \underline{M} \underline{\phi}_{j}^{T} = \delta_{ij}, \quad \underline{\phi}_{i}^{T} \underline{K} \underline{\phi}_{j}^{T} = \omega_{i}^{2} \delta_{ij}$

Using
$$\underline{\mathbf{U}} = \underline{\Phi} \underline{\mathbf{X}}$$
 where $\underline{\Phi} = \begin{bmatrix} \underline{\phi}_1 \end{bmatrix} = \begin{bmatrix} 0.3029 \\ 0.6739 \end{bmatrix}$
 $\ddot{\mathbf{x}} + \omega_1^2 \mathbf{x} = \underline{\Phi}^T \begin{bmatrix} 10 \\ 0 \end{bmatrix} = 3.029$ (1)

The generalized solution for (1) is

$$x_1 = Asin\omega_1 t + Bcos\omega_1 t + \frac{3.029}{\omega_1^2} = Asin\omega_1 t + Bcos\omega_1 t + 1.7062$$

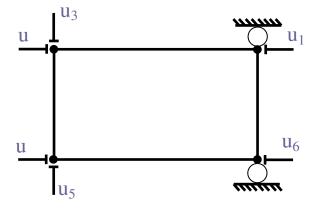
From ${}^{0}\underline{U} = {}^{0}\underline{\dot{U}} = 0$, x=0 and $\dot{x}=0$ Using these initial conditions,

$$x_1 = 1.7062(1 - \cos\omega_1 t) = 1.7062(1 - \cos\sqrt{1.7753t})$$

Therefore,
$$\underline{\mathbf{U}} = \underline{\Phi}\underline{\mathbf{X}} = \begin{bmatrix} 0.3029\\ 0.6739 \end{bmatrix} 1.7062(1 - \cos\sqrt{1.7753}t) = \begin{bmatrix} 0.5168(1 - \cos\sqrt{1.7753}t) \\ 1.1498(1 - \cos\sqrt{1.7753}t) \end{bmatrix}$$

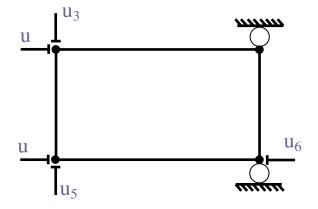
Problem 2 (10 points):

For case 1, the structure is clearly unstable, hence a zero diagonal element will be encountered in the Gauss elimination.



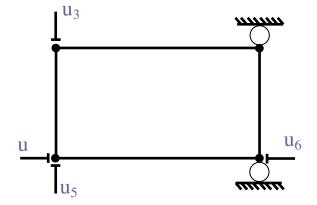
All clamps see stiffness. No rigid body motion possible.

After removing the clamp at u₁,



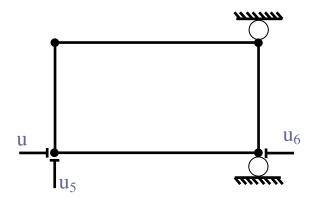
All clamps see stiffness. No rigid body motion possible.

After removing the clamp at u₂,



All clamps see stiffness. No rigid body motion possible.

After removing the clamp at u₃,



The clamp for u_5 "sees" no more stiffness. A rigid body rotation is possible. Therefore there will be a zero diagonal term after the third step of Gauss elimination.

For case 2, the structure is clearly stable, hence there will be no zero diagonal term in the Gauss elimination.

Problem 3 (10 points):

 $2\ddot{U}+8U=0$ (1) ${}^{0}U=10^{-12}, {}^{0}\dot{U}=0$ (2)

$$\omega^2 = \sqrt{\frac{K}{M}} = \sqrt{4} = 2$$

Therefore $\omega = 2$ and $\Delta t_{cr} = \frac{T}{\pi} = \frac{2}{\omega} = 1$.

 $\Delta t = 1.01 \times 1 = 1.01$

We are able to obtain ${}^{0}\ddot{U}$ using eq. (1) and (2)

$${}^{0}\ddot{U}$$
= - 4 0 U= - 4×10⁻¹²

To calculate $\,\,^{\mbox{-}\Delta t}\,U$, use (9.7) in textbook,

$${}^{-\Delta t} U = {}^{0}U - \Delta t {}^{0}\dot{U} + \frac{\Delta t^{2}}{2} {}^{0}\ddot{U}$$
$$= 10^{-12} + \frac{1.01^{2}}{2} (-4 \times 10^{-12}) = -1.0402 \times 10^{-12}$$

Then ${}^{t+\Delta t}U$ can be solved using the central difference method.

$$\begin{bmatrix} t+\Delta t & \mathbf{U} = (2 - 4\Delta t^2)^{\mathsf{t}} \mathbf{U} - t-\Delta t & \mathbf{U} \end{bmatrix} \begin{bmatrix} t+\Delta t & \mathbf{U} \\ t & \mathbf{U} \end{bmatrix} = \begin{bmatrix} 2 - 4\Delta t^2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t & \mathbf{U} \\ t-\Delta t & \mathbf{U} \end{bmatrix}$$

 $^{t+\Delta t}U$ becomes larger than 10^{30} after 345 time steps (I used Matlab).

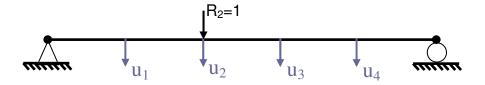
After 345 time steps

$$\begin{bmatrix} {}^{t+\Delta t}\mathbf{U} \\ {}^{t}\mathbf{U} \end{bmatrix} = \begin{bmatrix} 1.4630 \times 10^{30} \\ -1.9408 \times 10^{30} \end{bmatrix}$$

Problem 4 (10 points):

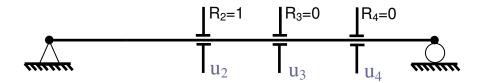
Step 1

Let a technician put an external force, $R_2=1$ and then measure the corresponding displacements, u_1 , u_2 , u_3 , and u_4 .



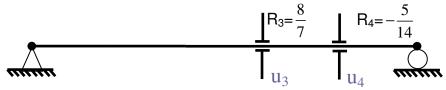
Step 2

Place clamps at $u_{2,} u_{3,}$ and u_{4} and then impose displacements measured in step 1 and measure the forces in the clamp.



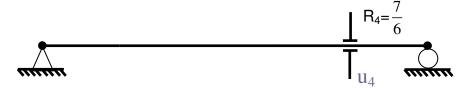
Step 3

Place clamps at $u_{3,}$ and u_{4} and then impose displacements measured in step 1 and measure the forces in the clamp.



Step 4

Place clamps at u_4 and then impose displacements measured in step 1 and measure the forces in the clamp.



(Figures could be smaller to make it one half a page)

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I $_{\mbox{Fall }2009}$

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.