2.092/2.093
 Finite Element Analysis of Solids and Fluids I

FALL 2009

Homework 7-solution

Instructor:
TA:

Prof. K. J. Bathe
Seounghyun Ham

Assigned: Session 16
Due: \quad Session 19

Problem 1 (20 points):
$\underline{K}=\left[\begin{array}{cc}4 & -1 \\ -1 & 4\end{array}\right], \underline{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], \underline{R}=\left[\begin{array}{c}10 \\ 0\end{array}\right]$
${ }^{0} \underline{U}=0 ; \quad{ }^{0} \underline{\dot{U}}=0$
Considering the eigenproblem, $\underline{\mathrm{K}} \underline{\phi}=\omega^{2} \underline{\mathrm{M}} \underline{\phi}$

$$
\omega_{1}^{2}=1.7753, \quad \underline{\phi}_{1}=\left[\begin{array}{l}
0.3029 \\
0.6739
\end{array}\right] \quad \underline{\text { Note: }} \underline{\phi}_{i}^{T} \underline{\underline{M}} \underline{\phi}_{j}^{T}=\delta_{\mathrm{ij}}, \underline{\phi}_{i}^{T} \underline{\mathrm{~K}} \underline{\phi}_{j}^{T}=\omega_{\mathrm{i}}^{2} \delta_{\mathrm{ij}}
$$

Using $\underline{U}=\underline{\Phi} \underline{X}$ where $\underline{\Phi}=\left[\underline{\phi}_{1}\right]=\left[\begin{array}{l}0.3029 \\ 0.6739\end{array}\right]$

$$
\ddot{\mathrm{x}}+\omega_{1}^{2} \mathrm{x}=\underline{\Phi}^{\mathrm{T}}\left[\begin{array}{c}
10 \tag{1}\\
0
\end{array}\right]=3.029
$$

The generalized solution for (1) is
$\mathrm{x}_{1}=\mathrm{A} \sin \omega_{1} \mathrm{t}+\mathrm{B} \cos \omega_{1} \mathrm{t}+\frac{3.029}{\omega_{1}^{2}}=\mathrm{A} \sin \omega_{1} \mathrm{t}+\mathrm{B} \cos \omega_{1} \mathrm{t}+1.7062$
From ${ }^{0} \underline{U}={ }^{0} \dot{\underline{U}}=0, x=0$ and $\dot{x}=0$
Using these initial conditions,
$\mathrm{x}_{1}=1.7062\left(1-\cos \omega_{1} \mathrm{t}\right)=1.7062(1-\cos \sqrt{1.7753} \mathrm{t})$

Therefore, $\underline{U}=\underline{\Phi} \underline{X}=\left[\begin{array}{l}0.3029 \\ 0.6739\end{array}\right] 1.7062(1-\cos \sqrt{1.7753} \mathrm{t})=\left[\begin{array}{l}0.5168(1-\cos \sqrt{1.7753} \mathrm{t}) \\ 1.1498(1-\cos \sqrt{1.7753} \mathrm{t})\end{array}\right]$

Problem 2 (10 points):
For case 1, the structure is clearly unstable, hence a zero diagonal element will be encountered in the Gauss elimination.

All clamps see stiffness. No rigid body motion possible.

After removing the clamp at u_{1},

All clamps see stiffness. No rigid body motion possible.

After removing the clamp at u_{2},

All clamps see stiffness. No rigid body motion possible.

After removing the clamp at u_{3},

The clamp for u_{5} "sees" no more stiffness. A rigid body rotation is possible. Therefore there will be a zero diagonal term after the third step of Gauss elimination.

For case 2, the structure is clearly stable, hence there will be no zero diagonal term in the Gauss elimination.

Problem 3 (10 points):

$$
\begin{align*}
& 2 \ddot{\mathrm{U}}+8 \mathrm{U}=0 \tag{1}\\
& { }^{0} \mathrm{U}=10^{-12},{ }^{0} \dot{\mathrm{U}}=0 \tag{2}
\end{align*}
$$

$\omega^{2}=\sqrt{\frac{K}{M}}=\sqrt{4}=2$
Therefore $\omega=2$ and $\Delta t_{c r}=\frac{T}{\pi}=\frac{2}{\omega}=1$.
$\Delta t=1.01 \times 1=1.01$
We are able to obtain ${ }^{0} \ddot{\mathrm{U}}$ using eq. (1) and (2)
${ }^{0} \ddot{\mathrm{U}}=-4^{0} \mathrm{U}=-4 \times 10^{-12}$
To calculate ${ }^{-\Delta t} U$, use (9.7) in textbook,

$$
\begin{aligned}
{ }^{-\Delta t} & ={ }^{0} U-\Delta t^{0} \dot{U}+\frac{\Delta t^{2}}{2}{ }^{0} \ddot{\mathrm{U}} \\
& =10^{-12}+\frac{1.01^{2}}{2}\left(-4 \times 10^{-12}\right)=-1.0402 \times 10^{-12}
\end{aligned}
$$

Then ${ }^{t+\Delta t} U$ can be solved using the central difference method.
${ }^{t+\Delta t} U=\left(2-4 \Delta t^{2}\right){ }^{t} U-{ }^{t-\Delta t} U$
$\left[\begin{array}{c}{ }^{t+\Delta t} U \\ { }^{t} U\end{array}\right]=\left[\begin{array}{cc}2-4 \Delta t^{2} & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}{ }^{t} U \\ {[-\Delta t} \\ U\end{array}\right]$
${ }^{t+\Delta t} U$ becomes larger than 10^{30} after 345 time steps (I used Matlab).
After 345 time steps
$\left[\begin{array}{c}{ }^{t+\Delta t} \mathrm{U} \\ { }^{\mathrm{t}} \mathrm{U}\end{array}\right]=\left[\begin{array}{c}1.4630 \times 10^{30} \\ -1.9408 \times 10^{30}\end{array}\right]$

Problem 4 (10 points):

Step 1

Let a technician put an external force, $\mathrm{R}_{2}=1$ and then measure the corresponding displacements, $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$, and u_{4}.

Step 2

Place clamps at u_{2}, u_{3}, and u_{4} and then impose displacements measured in step 1 and measure the forces in the clamp.

Step 3
Place clamps at u_{3}, and u_{4} and then impose displacements measured in step 1 and measure the forces in the clamp.

Step 4
Place clamps at \mathbf{u}_{4} and then impose displacements measured in step 1 and measure the forces in the clamp.

(Figures could be smaller to make it one half a page)

MIT OpenCourseWare
http://ocw.mit.edu
2.092 / 2.093 Finite Element Analysis of Solids and Fluids I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

