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(Numerical) Differential Equations

305





Chapter 20

Motivation

Although mobile robots operating in flat, indoor environments can often perform quite well
without any suspension, in uneven terrain, a well-designed suspension can be critical.

An actual robot suspension and its simplified model are shown in Figure 20.1. The rear and front
springs with spring constants k1 and k2 serve to decouple the rest of the robot chassis from the
wheels, allowing the chassis and any attached instrumentation to “float” relatively unperturbed
while the wheels remain free to follow the terrain and maintain traction. The rear and front
dampers with damping coefficients c1 and c2 (shown here inside the springs) dissipate energy to
prevent excessive chassis displacements (e.g., from excitation of a resonant mode) and oscillations.
Note that in our “half-robot” model, k1 accounts for the combined stiffness of both rear wheels,
and k2 accounts for the combined stiffness of both front wheels. Similarly, c1 and c2 account for
the combined damping coefficients of both rear wheels and both front wheels, respectively.

We are particularly concerned with the possibility of either the front or rear wheels losing contact
with the ground, the consequences of which — loss of control and a potentially harsh landing —
we wish to avoid.

To aid in our understanding of robot suspensions and, in particular, to understand the condi-
tions resulting in loss of contact, we wish to develop a simulation based on the simple model of
Figure 20.1(b). Specifically, we wish to simulate the transient (time) response of the robot with
suspension traveling at some constant velocity v over a surface with profile H(x), the height of the
ground as a function of x, and to check if loss of contact occurs. To do so, we must integrate the
differential equations of motion for the system.

First, we determine the motion at the rear (subscript 1) and front (subscript 2) wheels in order
to calculate the normal forces N1 and N2. Because we assume constant velocity v, we can determine
the position in x of the center of mass at any time t (we assume X(t = 0) = 0) as

X = vt . (20.1)

Given the current state Y , Ẏ , θ (the inclination of the chassis), and θ̇, we can then calculate the
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(a) Actual robot suspension.
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(b) Robot suspension model.

Figure 20.1: Mobile robot suspension

positions and velocities in both x and y at the rear and front wheels (assuming θ is small) as

X1 = X − L1, (Ẋ1 = v) ,

X2 = X + L2, (Ẋ2 = v) ,

Y1 = Y − L1θ ,

Ẏ1 = Ẏ − L1θ̇ ,

Y2 = Y + L2θ ,

Ẏ2 = Ẏ + L2θ̇ ,

(20.2)

where L1 and L2 are the distances to the system’s center of mass from the rear and front wheels.
(Recall ˙ refers to time derivative.) Note that we define Y = 0 as the height of the robot’s center
of mass with both wheels in contact with flat ground and both springs at their unstretched and
uncompressed lengths, i.e., when N1 = N2 = 0. Next, we determine the heights of the ground at
the rear and front contact points as

h1 = H(X1) ,

h2 = H(X2) .
(20.3)

Similarly, the rates of change of the ground height at the rear and front are given by

dh1

dt
= ḣ1 = v

d

dx
H(X1) ,

dh2

dt
= ḣ2 = v

d

dx
H(X2) .

(20.4)

Note that we must multiply the spatial derivatives dH
dx by v = dX

dt to find the temporal derivatives.
While the wheels are in contact with the ground we can determine the normal forces at the rear

and front from the constitutive equations for the springs and dampers as

N1 = k1(h1 − Y1) + c1(ḣ1 − Ẏ1) ,

N2 = k2(h2 − Y2) + c2(ḣ2 − Ẏ2) .
(20.5)

308



If either N1 or N2 is calculated from Equations (20.5) to be less than or equal to zero, we can
determine that the respective wheel has lost contact with the ground and stop the simulation,
concluding loss of contact, i.e., failure.

Finally, we can determine the rates of change of the state from the linearized (cos θ ≈ 1,
sin θ ≈ θ) equations of motion for the robot, given by Newton-Euler as

Ẍ = 0, Ẋ = v, X(0) = 0 ,

Ÿ = −g +
N1 +N2

m
, Ẏ (0) = Ẏ0, Y (0) = Y0 ,

θ̈ =
N2L2 −N1L1

Izz
, θ̇(0) = θ̇0, θ(0) = θ0 ,

(20.6)

where m is the mass of the robot, and Izz is the moment of inertia of the robot about an axis
parallel to the Z axis passing through the robot’s center of mass.

In this unit we shall discuss the numerical procedures by which to integrate systems of ordinary
differential equations such as (20.6). This integration can then permit us to determine loss of
contact and hence failure.
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Chapter 21

Initial Value Problems

21.1 Scalar First-Order Linear ODEs

21.1.1 Model Problem

Let us consider a canonical initial value problem (IVP),

du

dt
= λu+ f(t), 0 < t < tf ,

u(0) = u0 .

The objective is to find u over all time t ∈ ]0, tf ] that satisfies the ordinary differential equation
(ODE) and the initial condition. This problem belongs to the class of initial value problems (IVP)
since we supplement the equation with condition(s) only at the initial time. The ODE is first order
because the highest derivative that appears in the equation is the first-order derivative; because it
is first order, only one initial condition is required to define a unique solution. The ODE is linear
because the expression is linear with respect to u and its derivative du/dt; note that f does not have
to be a linear function of t for the ODE to be linear. Finally, the equation is scalar since we have
only a single unknown, u(t) ∈ R. The coefficient λ ∈ R controls the behavior of the ODE; λ < 0
results in a stable (i.e. decaying) behavior, whereas λ > 0 results in an unstable (i.e. growing)
behavior.

We can motivate this model problem (with λ < 0) physically with a simple heat transfer
situation. We consider a body at initial temperature u0 > 0 which is then “dunked” or “immersed”
into a fluid flow — forced or natural convection — of ambient temperature (away from the body)
zero. (More physically, we may view u0 as the temperature elevation above some non-zero ambient
temperature.) We model the heat transfer from the body to the fluid by a heat transfer coefficient,
h. We also permit heat generation within the body, q̇(t), due (say) to Joule heating or radiation.
If we now assume that the Biot number — the product of h and the body “diameter” in the
numerator, thermal conductivity of the body in the denominator — is small, the temperature of
the body will be roughly uniform in space. In this case, the temperature of the body as a function
of time, u(t), will be governed by our ordinary differential equation (ODE) initial value problem
(IVP), with λ = −hArea/ρcVol and f(t) = q̇(t)/ρcVol, where ρ and c are the body density and
specific heat, respectively, and Area and Vol are the body surface area and volume, respectively.
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In fact, it is possible to express the solution to our model problem in closed form (as a con-
volution). Our interest in the model problem is thus not because we require a numerical solution
procedure for this particular simple problem. Rather, as we shall see, our model problem will
provide a foundation on which to construct and understand numerical procedures for much more
difficult problems — which do not admit closed-form solution.

21.1.2 Analytical Solution

Before we pursue numerical methods for solving the IVP, let us study the analytical solution for
a few cases which provide insight into the solution and also suggest test cases for our numerical
approaches.

Homogeneous Equation

The first case considered is the homogeneous case, i.e., f(t) = 0. Without loss of generality, let us
set u0 = 1. Thus, we consider

du

dt
= λu, 0 < t < tf ,

u(0) = 1 .

We find the analytical solution by following the standard procedure for obtaining the homogeneous
solution, i.e., substitute u = αeβt to obtain

(LHS) =
du

dt
=

d

dt
(αeβt) = αβet ,

(RHS) = λαeβt .

Equating the LHS and RHS, we obtain β = λ. The solution is of the form u(t) = αeλt. The
coefficient α is specified by the initial condition, i.e.

u(t = 0) = α = 1 ;

thus, the coefficient is α = 1. The solution to the homogeneous ODE is

u(t) = eλt .

Note that solution starts from 1 (per the initial condition) and decays to zero for λ < 0. The decay
rate is controlled by the time constant 1/|λ| — the larger the λ, the faster the decay. The solution
for a few different values of λ are shown in Figure 21.1.

We note that for λ > 0 the solution grows exponentially in time: the system is unstable. (In
actual fact, in most physical situations, at some point additional terms — for example, nonlinear
effects not included in our simple model — would become important and ensure saturation in
some steady state.) In the remainder of this chapter unless specifically indicated otherwise we shall
assume that λ < 0.

Constant Forcing

Next, we consider a constant forcing case with u0 = 0 and f(t) = 1, i.e.

du

dt
= λu+ 1 ,

u0 = 0 .
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Figure 21.1: Solutions to the homogeneous equation.

We have already found the homogeneous solution to the ODE. We now find the particular solution.
Because the forcing term is constant, we consider a particular solution of the form up(t) = γ.
Substitution of up yields

0 = λγ + 1 ⇒ γ = − 1

λ
.

Thus, our solution is of the form

u(t) = − 1

λ
+ αeλt .

Enforcing the initial condition,

u(t = 0) = − 1

λ
+ α = 0 ⇒ α =

1

λ
.

Thus, our solution is given by

u(t) =
1

λ

(
eλt − 1

)
.

The solutions for a few different values of λ are shown in Figure 21.2. For λ < 0, after the transient
which decays on the time scale 1/|λ|, the solution settles to the steady state value of −1/λ.

Sinusoidal Forcing

Let us consider a final case with u0 = 0 and a sinusoidal forcing, f(t) = cos(ωt), i.e.

du

dt
= λu+ cos(ωt) ,

u0 = 0 .

Because the forcing term is sinusoidal with the frequency ω, the particular solution is of the form
up(t) = γ sin(ωt) + δ cos(ωt). Substitution of the particular solution to the ODE yields

(LHS) =
dup
dt

= ω(γ cos(ωt)− δ sin(ωt)) ,

(RHS) = λ(γ sin(ωt) + δ cos(ωt)) + cos(ωt) .
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Figure 21.2: Solutions to the ODE with unit constant forcing.

Equating the LHS and RHS and collecting like coefficients we obtain

ωγ = λδ + 1 ,

−ωδ = λγ .

The solution to this linear system is given by γ = ω/(ω2 + λ2) and δ = −λ/(ω2 + λ2). Thus, the
solution is of the form

u(t) =
ω

ω2 + λ2
sin(ωt)− λ

ω2 + λ2
cos(ωt) + αeλt .

Imposing the boundary condition, we obtain

u(t = 0) = − λ

ω2 + λ2
+ α = 0 ⇒ α =

λ

ω2 + λ2
.

Thus, the solution to the IVP with the sinusoidal forcing is

u(t) =
ω

ω2 + λ2
sin(ωt)− λ

ω2 + λ2

(
cos(ωt)− eλt

)
.

We note that for low frequency there is no phase shift; however, for high frequency there is a π/2
phase shift.

The solutions for λ = −1, ω = 1 and λ = −20, ω = 1 are shown in Figure 21.3. The steady
state behavior is controlled by the sinusoidal forcing function and has the time scale of 1/ω. On
the other hand, the initial transient is controlled by λ and has the time scale of 1/|λ|. In particular,
note that for |λ| � ω, the solution exhibits very different time scales in the transient and in the
steady (periodic) state. This is an example of a stiff equation (we shall see another example at the
conclusion of this unit). Solving a stiff equation introduces additional computational challenges for
numerical schemes, as we will see shortly.

21.1.3 A First Numerical Method: Euler Backward (Implicit)

In this section, we consider the Euler Backward integrator for solving initial value problems. We
first introduce the time stepping scheme and then discuss a number of properties that characterize
the scheme.
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Figure 21.3: Solutions to the ODE with sinusoidal forcing.

Discretization

In order to solve an IVP numerically, we first discretize the time domain ]0, tf ] into J segments.
The discrete time points are given by

tj = j∆t, j = 0, 1, . . . , J = tf/∆t ,

where ∆t is the time step. For simplicity, we assume in this chapter that the time step is constant
throughout the time integration.

The Euler Backward method is obtained by applying the first-order Backward Difference For-
mula (see Unit I) to the time derivative. Namely, we approximate the time derivative by

du

dt
≈ ũj − ũj−1

∆t
,

where ũj = ũ(tj) is the approximation to u(tj) and ∆t = tj − tj−1 is the time step. Substituting
the approximation into the differential equation, we obtain a difference equation

ũj − ũj−1

∆t
= λũj + f(tj), j = 1, . . . , J ,

ũ0 = u0 ,

for ũj , j = 0, . . . , J . Note the scheme is called “implicit” because time level j appears on the
right-hand side. We can think of Euler Backward as a kind of rectangle, right integration rule —
but now the integrand is not known a priori .

We anticipate that the solution ũj , j = 1, . . . , J , approaches the true solution u(tj), j = 1, . . . , J ,
as the time step gets smaller and the finite difference approximation approaches the continuous sys-
tem. In order for this convergence to the true solution to take place, the discretization must possess
two important properties: consistency and stability. Note our analysis here is more subtle than
the analysis in Unit I. In Unit I we looked at the error in the finite difference approximation; here,
we are interested in the error induced by the finite difference approximation on the approximate
solution of the ODE IVP.
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Consistency

Consistency is a property of a discretization that ensures that the discrete equation approximates
the same process as the underlying ODE as the time step goes to zero. This is an important
property, because if the scheme is not consistent with the ODE, then the scheme is modeling a
different process and the solution would not converge to the true solution.

Let us define the notion of consistency more formally. We first define the truncation error by
substituting the true solution u(t) into the Euler Backward discretization, i.e.

τ jtrunc ≡
u(tj)− u(tj−1)

∆t
− λu(tj)− f(tj), j = 1, . . . , J .

Note that the truncation error, τ jtrunc, measures the extent to which the exact solution to the ODE
does not satisfy the difference equation. In general, the exact solution does not satisfy the difference
equation, so τ jtrunc 6= 0. In fact, as we will see shortly, if τ jtrunc = 0, j = 1, . . . , J , then ũj = u(tj),
i.e., ũj is the exact solution to the ODE at the time points.

We are particularly interested in the largest of the truncation errors, which is in a sense the
largest discrepancy between the differential equation and the difference equation. We denote this
using the infinity norm,

‖τtrunc‖∞ = max
j=1,...,J

|τ jtrunc| .

A scheme is consistent with the ODE if

‖τtrunc‖∞ → 0 as ∆t→ 0 .

The difference equation for a consistent scheme approaches the differential equation as ∆t →
0. However, this does not necessary imply that the solution to the difference equation, ũ(tj),
approaches the solution to the differential equation, u(tj).

The Euler Backward scheme is consistent. In particular

‖τtrunc‖∞ ≤
∆t

2
max
t∈[0,tf ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣→ 0 as ∆t→ 0 .

We demonstrate this result below.

Begin Advanced Material

Let us now analyze the consistency of the Euler Backward integration scheme. We first apply
Taylor expansion to u(tj−1) about tj , i.e.

u(tj−1) = u(tj)−∆t
du

dt
(tj)−

∫ tj

tj−1

(∫ τ

tj−1

d2u

dt2
(γ)dγ

)
dτ︸ ︷︷ ︸

sj(u)

.

This result is simple to derive. By the fundamental theorem of calculus,∫ τ

tj−1

du2

dt2
(γ)dγ =

du

dt
(τ)− du

dt
(tj−1) .
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Integrating both sides over ]tj−1, tj [,∫ tj

tj−1

(∫ τ

tj−1

du2

dt2
(γ)dγ

)
dτ =

∫ tj

tj−1

(
du

dt
(τ)

)
dτ −

∫ tj

tj−1

(
du

dt
(tj−1)

)
dτ

= u(tj)− u(tj−1)− (tj − tj−1)
du

dt
(tj−1)

= u(tj)− u(tj−1)−∆t
du

dt
(tj−1) .

Substitution of the expression to the right-hand side of the Taylor series expansion yields

u(tj)−∆t
du

dt
(tj)− sj(u) = u(tj)−∆t

du

dt
(tj)− u(tj) + u(tj−1) + ∆t

du

dt
(tj−1) = u(tj−1) ,

which proves the desired result.
Substituting the Taylor expansion into the expression for the truncation error,

τ jtrunc =
u(tj)− u(tj−1)

∆t
− λu(tj)− f(tj)

=
1

∆t

(
u(tj)−

(
u(tj)−∆t

du

dt
(tj)− sj(u)

))
− λu(tj)− f(tj)

=
du

dt
(tj)− λu(tj)− f(tj)︸ ︷︷ ︸

=0 : by ODE

+
sj(u)

∆t

=
sj(u)

∆t
.

We now bound the remainder term sj(u) as a function of ∆t. Note that

sj(u) =

∫ tj

tj−1

(∫ τ

tj−1

d2u

dt2
(γ)dγ

)
dτ ≤

∫ tj

tj−1

(∫ τ

tj−1

∣∣∣∣∣d2u

dt2
(γ)

∣∣∣∣∣ dγ
)
dτ

≤ max
t∈[tj−1,tj ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣
∫ tj

tj−1

∫ τ

tj−1

dγdτ

= max
t∈[tj−1,tj ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣ ∆t2

2
, j = 1, . . . , J .

So, the maximum truncation error is

‖τtrunc‖∞ = max
j=1,...,J

|τ jtrunc| ≤ max
j=1,...,J

(
1

∆t
max

t∈[tj−1,tj ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣ ∆t2

2

)
≤ ∆t

2
max
t∈[0,tf ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣ .
We see that

‖τtrunc‖∞ ≤
∆t

2
max
t∈[0,tf ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣→ 0 as ∆t→ 0 .

Thus, the Euler Backward scheme is consistent.

End Advanced Material

317



Stability

Stability is a property of a discretization that ensures that the error in the numerical approximation
does not grow with time. This is an important property, because it ensures that a small truncation
error introduced at each time step does not cause a catastrophic divergence in the solution over
time.

To study stability, let us consider a homogeneous IVP,

du

dt
= λu ,

u(0) = 1 .

Recall that the true solution is of the form u(t) = eλt and decays for λ < 0. Applying the Euler
Backward scheme, we obtain

ũj − ũj−1

∆t
= λũj , j = 1, . . . , J ,

u0 = 1 .

A scheme is said to be absolutely stable if

|ũj | ≤ |ũj−1|, j = 1, . . . , J .

Alternatively, we can define the amplification factor, γ, as

γ ≡ |ũj |
|ũj−1| .

Absolute stability requires that γ ≤ 1 for all j = 1, . . . , J .
Let us now show that the Euler Backward scheme is stable for all ∆t (for λ < 0). Rearranging

the difference equation,

ũj − ũj−1 = λ∆t ũj

ũj(1− λ∆t) = ũj−1

|ũj | |1− λ∆t| = |ũj−1| .

So, we have

γ =
|ũj |
|ũj−1| =

1

|1− λ∆t| .

Recalling that λ < 0 (and ∆t > 0), we have

γ =
1

1− λ∆t
< 1 .

Thus, the Euler Backward scheme is stable for all ∆t for the model problem considered. The
scheme is said to be unconditionally stable because it is stable for all ∆t. Some schemes are only
conditionally stable, which means the scheme is stable for ∆t ≤ ∆tcr, where ∆tcr is some critical
time step.
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Convergence: Dahlquist Equivalence Theorem

Now we define the notion of convergence. A scheme is convergent if the numerical approximation
approaches the analytical solution as the time step is reduced. Formally, this means that

ũj ≡ ũ(tj)→ u(tj) for fixed tj as ∆t→ 0 .

Note that fixed time tj means that the time index must go to infinity (i.e., an infinite number of
time steps are required) as ∆t → 0 because tj = j∆t. Thus, convergence requires that not too
much error is accumulated at each time step. Furthermore, the error generated at a given step
should not grow over time.

The relationship between consistency, stability, and convergence is summarized in the Dahlquist
equivalence theorem. The theorem states that consistency and stability are the necessary and
sufficient condition for a convergent scheme, i.e.

consistency + stability⇔ convergence .

Thus, we only need to show that a scheme is consistent and (absolutely) stable to show that
the scheme is convergent. In particular, the Euler Backward scheme is convergent because it is
consistent and (absolutely) stable.

Begin Advanced Material

Example 21.1.1 Consistency, stability, and convergence for Euler Backward
In this example, we will study in detail the relationship among consistency, stability, and conver-
gence for the Euler Backward scheme. Let us denote the error in the solution by ej ,

ej ≡ u(tj)− ũ(tj) .

We first relate the evolution of the error to the truncation error. To begin, we recall that

u(tj)− u(tj−1)− λ∆tu(tj)−∆tf(tj) = ∆tτ jtrunc ,

ũ(tj)− ũ(tj−1)− λ∆tũ(tj)−∆tf(tj) = 0 ;

subtracting these two equations and using the definition of the error we obtain

ej − ej−1 − λ∆tej = ∆tτ jtrunc ,

or, rearranging the equation,

(1− λ∆t)ej − ej−1 = ∆tτ jtrunc .

We see that the error itself satisfies the Euler Backward difference equation with the truncation
error as the source term. Clearly, if the truncation error τ jtrunc is zero for all time steps (and initial
error is zero), then the error remains zero. In other words, if the truncation error is zero then the
scheme produces the exact solution at each time step.

However, in general, the truncation error is nonzero, and we would like to analyze its influence
on the error. Let us multiply the equation by (1− λ∆t)j−1 to get

(1− λ∆t)jej − (1− λ∆t)j−1ej−1 = (1− λ∆t)j−1∆tτ jtrunc ,
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Now, let us compute the sum for j = 1, . . . , n, for some n ≤ J ,

n∑
j=1

[
(1− λ∆t)jej − (1− λ∆t)j−1ej−1

]
=

n∑
j=1

[
(1− λ∆t)j−1∆tτ jtrunc

]
.

This is a telescopic series and all the middle terms on the left-hand side cancel. More explicitly,

(1− λ∆t)nen − (1− λ∆t)n−1en−1 = (1− λ∆t)n−1∆tτntrunc

(1− λ∆t)n−1en−1 − (1− λ∆t)n−2en−2 = (1− λ∆t)n−2∆tτn−1
trunc

...

(1− λ∆t)2e2 − (1− λ∆t)1e1 = (1− λ∆t)1∆tτ2
trunc

(1− λ∆t)1e1 − (1− λ∆t)0e0 = (1− λ∆t)0∆tτ1
trunc

simplifies to

(1− λ∆t)nen − e0 =
n∑
j=1

(1− λ∆t)j−1∆tτ jtrunc .

Recall that we set ũ0 = ũ(t0) = u(t0), so the initial error is zero (e0 = 0). Thus, we are left with

(1− λ∆t)nen =

n∑
j=1

(1− λ∆t)j−1∆tτ jtrunc

or, equivalently,

en =
n∑
j=1

(1− λ∆t)j−n−1∆tτ jtrunc .

Recalling that ‖τtrunc‖∞ = maxj=1,...,J |τ jtrunc|, we can bound the error by

|en| ≤ ∆t‖τtrunc‖∞
n∑
j=1

(1− λ∆t)j−n−1 .

Recalling the amplification factor for the Euler Backward scheme, γ = 1/(1−λ∆t), the summation
can be rewritten as

n∑
j=1

(1− λ∆t)j−n−1 =
1

(1− λ∆t)n
+

1

(1− λ∆t)n−1
+ · · ·+ 1

(1− λ∆t)

= γn + γn−1 + · · ·+ γ .

Because the scheme is stable, the amplification factor satisfies γ ≤ 1. Thus, the sum is bounded by

n∑
j=1

(1− λ∆t)j−n−1 = γn + γn−1 + · · ·+ γ ≤ nγ ≤ n .
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Thus, we have

|en| ≤ (n∆t)‖τtrunc‖∞ = tn‖τtrunc‖∞ .

Furthermore, because the scheme is consistent, ‖τtrunc‖∞ → 0 as ∆t→ 0. Thus,

‖en‖ ≤ tn‖τtrunc‖∞ → 0 as ∆t→ 0

for fixed tn = n∆t. Note that the proof of convergence relies on stability (γ ≤ 1) and consistency
(‖τtrunc‖∞ → 0 as ∆t→ 0).

·

End Advanced Material

Order of Accuracy

The Dahlquist equivalence theorem shows that if a scheme is consistent and stable, then it is
convergent. However, the theorem does not state how quickly the scheme converges to the true
solution as the time step is reduced. Formally, a scheme is said to be pth-order accurate if

|ej | < C∆tp for a fixed tj = j∆t as ∆t→ 0 .

The Euler Backward scheme is first-order accurate (p = 1), because

‖ej‖ ≤ tj‖τtrunc‖∞ ≤ tj
∆t

2
max
t∈[0,tf ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣ ≤ C∆t1

with

C =
tf
2

max
t∈[0,tf ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣ .
(We use here tj ≤ tf .)

In general, for a stable scheme, if the truncation error is pth-order accurate, then the scheme is
pth-order accurate, i.e.

‖τtrunc‖∞ ≤ C∆tp ⇒ |ej | ≤ C∆tp for a fixed tj = j∆t .

In other words, once we prove the stability of a scheme, then we just need to analyze its truncation
error to understand its convergence rate. This requires little more work than checking for consis-
tency. It is significantly simpler than deriving the expression for the evolution of the error and
analyzing the error behavior directly.

Figure 21.4 shows the error convergence behavior of the Euler Backward scheme applied to the
homogeneous ODE with λ = −4. The error is measured at t = 1. Consistent with the theory, the
scheme converges at the rate of p = 1.

21.1.4 An Explicit Scheme: Euler Forward

Let us now introduce a new scheme, the Euler Forward scheme. The Euler Forward scheme is
obtained by applying the first-order forward difference formula to the time derivative, i.e.

du

dt
≈ ũj+1 − ũj

∆t
.
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Figure 21.4: The error convergence behavior for the Euler Backward scheme applied to the homo-
geneous ODE (λ = −4). Note e(t = 1) = |u(tj)− ũj | at tj = j∆t = 1.

Substitution of the expression to the linear ODE yields a difference equation,

ũj+1 − ũj
∆t

= λũj + f(tj), j = 0, . . . , J − 1 ,

ũ0 = u0 .

To maintain the same time index as the Euler Backward scheme (i.e., the difference equation
involves the unknowns ũj and ũj−1), let us shift the indices to obtain

ũj − ũj−1

∆t
= λũj−1 + f(tj−1), j = 1, . . . , J ,

ũ0 = u0 .

The key difference from the Euler Backward scheme is that the terms on the right-hand side are
evaluated at tj−1 instead of at tj . Schemes for which the right-hand side does not involve time
level j are known as “explicit” schemes. While the change may appear minor, this significantly
modifies the stability. (It also changes the computational complexity, as we will discuss later.) We
may view Euler Forward as a kind of “rectangle, left” integration rule.

Let us now analyze the consistency and stability of the scheme. The proof of consistency is
similar to that for the Euler Backward scheme. The truncation error for the scheme is

τ jtrunc =
u(tj)− u(tj−1)

∆t
− λu(tj−1)− f(tj−1) .

To analyze the convergence of the truncation error, we apply Taylor expansion to u(tj) about tj−1

to obtain,

u(tj) = u(tj−1) + ∆t
du

dt
(tj−1) +

∫ tj

tj−1

(∫ τ

tj−1

du2

dt2
(γ)dγ

)
dτ︸ ︷︷ ︸

sj(u)

.
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Thus, the truncation error simplifies to

τ jtrunc =
1

∆t

(
u(tj−1) + ∆t

du

dt
(tj−1) + sj(u)− u(tj−1)

)
− λu(tj−1)− f(tj−1)

=
du

dt
(tj−1)− λu(tj−1)− f(tj−1)︸ ︷︷ ︸

=0 : by ODE

+
sj(u)

∆t

=
sj(u)

∆t
.

In proving the consistency of the Euler Backward scheme, we have shown that sj(u) is bounded by

sj(u) ≤ max
t∈[tj−1,tj ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣ ∆t2

2
, j = 1, . . . , J .

Thus, the maximum truncation error is bounded by

‖τtrunc‖∞ ≤ max
t∈[0,tf ]

∣∣∣∣∣d2u

dt2
(t)

∣∣∣∣∣ ∆t

2
.

Again, the truncation error converges linearly with ∆t and the scheme is consistent because
‖τtrunc‖∞ → 0 as ∆t → 0. Because the scheme is consistent, we only need to show that it is
stable to ensure convergence.

To analyze the stability of the scheme, let us compute the amplification factor. Rearranging
the difference equation for the homogeneous case,

ũj − ũj−1 = λ∆tũj−1

or
|ũj | = |1 + λ∆t||ũj−1|

which gives
γ = |1 + λ∆t| .

Thus, absolute stability (i.e., γ ≤ 1) requires

−1 ≤ 1 + λ∆t ≤ 1

−2 ≤ λ∆t ≤ 0 .

Noting λ∆t ≤ 0 is a trivial condition for λ < 0, the condition for stability is

∆t ≤ − 2

λ
≡ ∆tcr .

Note that the Euler Forward scheme is stable only for ∆t ≤ 2/|λ|. Thus, the scheme is conditionally
stable. Recalling the stability is a necessary condition for convergence, we conclude that the scheme
converges for ∆t ≤ ∆tcr, but diverges (i.e., blows up) with j if ∆t > ∆tcr.

Figure 21.5 shows the error convergence behavior of the Euler Forward scheme applied to the
homogeneous ODE with λ = −4. The error is measured at t = 1. The critical time step for stability
is ∆tcr = −2/λ = 1/2. The error convergence plot shows that the error grows exponentially for
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Figure 21.5: The error convergence behavior for the Euler Forward scheme applied to du/dt = −4u.
Note e(t = 1) = |u(tj)− ũj | at tj = j∆t = 1.

∆t > 1/2. As ∆t tends to zero, the numerical approximation converges to the exact solution, and
the convergence rate (order) is p = 1 — consistent with the theory.

We should emphasize that the instability of the Euler Forward scheme for ∆t > ∆tcr is not due to
round-off errors and floating point representation (which involves “truncation,” but not truncation
of the variety discussed in this chapter). In particular, all of our arguments for instability hold in
infinite-precision arithmetic as well as finite-precision arithmetic. The instability derives from the
difference equation; the instability amplifies truncation error, which is a property of the difference
equation and differential equation. Of course, an unstable difference equation will also amplify
round-off errors, but that is an additional consideration and not the main reason for the explosion
in Figure 21.5.

21.1.5 Stiff Equations: Implicit vs. Explicit

Stiff equations are the class of equations that exhibit a wide range of time scales. For example,
recall the linear ODE with a sinusoidal forcing,

du

dt
= λt+ cos(ωt) ,

with |λ| � ω. The transient response of the solution is dictated by the time constant 1/|λ|.
However, this initial transient decays exponentially with time. The long time response is governed
by the time constant 1/ω � 1/|λ|.

Let us consider the case with λ = −100 and ω = 4; the time scales differ by a factor of 25.
The result of applying the Euler Backward and Euler Forward schemes with several different time
steps is shown in Figure 21.6. Recall that the Euler Backward scheme is stable for any time step
for λ < 0. The numerical result confirms that the solution is bounded for all time steps considered.
While a large time step (in particular ∆t > 1/|λ|) results in an approximation which does not
capture the initial transient, the long term behavior of the solution is still well represented. Thus,
if the initial transient is not of interest, we can use a ∆t optimized to resolve only the long term
behavior associated with the characteristic time scale of 1/ω — in other words, ∆t ∼ O(1/10),

324



0 0.2 0.4 0.6 0.8 1

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t

u

 

 

∆t = 0.25

∆t = 0.0625

∆t = 0.015625

exact

(a) Euler Backward (solution)

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

1.00

∆t

e
(t

=
1

)

(b) Euler Backward (convergence)

0 0.2 0.4 0.6 0.8 1

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t

u

 

 

∆t = 0.25

∆t = 0.0625

∆t = 0.015625

exact

(c) Euler Forward (solution)

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

10
5

10
10

1.00

∆t

e
(t

=
1

)

(d) Euler Forward (convergence)

Figure 21.6: Application of the Euler Backward and Euler Forward schemes to a stiff equation.
Note e(t = 1) = |u(tj)− ũj | at tj = j∆t = 1.

rather than ∆t ∼ O(1/|λ|). If |λ| � ω, then we significantly reduce the number of time steps (and
thus the computational cost).

Unlike its implicit counterpart, the Euler Forward method is only conditionally stable. In
particular, the critical time step for this problem is ∆tcr = 2/|λ| = 0.02. Thus, even if we are not
interested in the initial transient, we cannot use a large time step because the scheme would be
unstable. Only one of the three numerical solution (∆t = 1/64 < ∆tcr) is shown in Figure 21.6(c)
because the other two time steps (∆t = 1/16, ∆t = 1/4) result in an unstable discretization and
a useless approximation. The exponential growth of the error for ∆t > ∆tcr is clearly reflected in
Figure 21.6(d).

Stiff equations are ubiquitous in the science and engineering context; in fact, it is not uncommon
to see scales that differ by over ten orders of magnitude. For example, the time scale associated
with the dynamics of a passenger jet is several orders of magnitude larger than the time scale
associated with turbulent eddies. If the dynamics of the smallest time scale is not of interest,
then an unconditionally stable scheme that allows us to take arbitrarily large time steps may be
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computationally advantageous. In particular, we can select the time step that is necessary to achieve
sufficient accuracy without any time step restriction arising from the stability consideration. Put
another way, integration of a stiff system using a conditionally stable method may place a stringent
requirement on the time step, rendering the integration prohibitively expensive. As none of the
explicit schemes are unconditionally stable, implicit schemes are often preferred for stiff equations.

We might conclude from the above that explicit schemes serve very little purpose. In fact, this
is not the case, because the story is a bit more complicated. In particular, we note that for Euler
Backward, at every time step, we must effect a division operation, 1/(1− (λ∆t)), whereas for Euler
Forward we must effect a multiplication, 1 + (λ∆t). When we consider real problems of interest —
systems, often large systems, of many and often nonlinear ODEs — these scalar algebraic operations
of division for implicit schemes and multiplication for explicit schemes will translate into matrix
inversion (more precisely, solution of matrix equations) and matrix multiplication, respectively.
In general, and as we shall see in Unit V, matrix inversion is much more costly than matrix
multiplication.

Hence the total cost equation is more nuanced. An implicit scheme will typically enjoy a larger
time step and hence fewer time steps — but require more work for each time step (matrix solution).
In contrast, an explicit scheme may require a much smaller time step and hence many more time
steps — but will entail much less work for each time step. For stiff equations in which the ∆t for
accuracy is much, much larger than the ∆tcr required for stability (of explicit schemes), typically
implicit wins. On the other hand, for non-stiff equations, in which the ∆t for accuracy might be on
the same order as ∆tcr required for stability (of explicit schemes), explicit can often win: in such
cases we would in any event (for reasons of accuracy) choose a ∆t ≈ ∆tcr; hence, since an explicit
scheme will be stable for this ∆t, we might as well choose an explicit scheme to minimize the work
per time step.

Begin Advanced Material

21.1.6 Unstable Equations

End Advanced Material

21.1.7 Absolute Stability and Stability Diagrams

We have learned that different integration schemes exhibit different stability characteristics. In
particular, implicit methods tend to be more stable than explicit methods. To characterize the
stability of different numerical integrators, let us introduce absolute stability diagrams. These
diagrams allow us to quickly analyze whether an integration scheme will be stable for a given
system.

Euler Backward

Let us construct the stability diagram for the Euler Backward scheme. We start with the homoge-
neous equation

dz

dt
= λz .

So far, we have only considered a real λ; now we allow λ to be a general complex number. (Later
λ will represent an eigenvalue of a system, which in general will be a complex number.) The Euler
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Figure 21.7: The absolute stability diagram for the Euler Backward scheme.

Backward discretization of the equation is

z̃j − z̃j−1

∆t
= λz̃j ⇒ z̃j = (1− (λ∆t))−1z̃j−1 .

Recall that we defined the absolute stability as the region in which the amplification factor γ ≡
|z̃j |/|z̃j−1| is less than or equal to unity. This requires

γ =
|z̃j |
|z̃j−1| =

∣∣∣∣ 1

1− (λ∆t)

∣∣∣∣ ≤ 1 .

We wish to find the values of (λ∆t) for which the numerical solution exhibits a stable behavior
(i.e., γ ≤ 1). A simple approach to achieve this is to solve for the stability boundary by setting the
amplification factor to 1 = |eiθ|, i.e.

eiθ =
1

1− (λ∆t)
.

Solving for (λ∆t), we obtain

(λ∆t) = 1− e−iθ .

Thus, the stability boundary for the Euler Backward scheme is a circle of unit radius (the “one”
multiplying eiθ) centered at 1 (the one directly after the = sign).

To deduce on which side of the boundary the scheme is stable, we can check the amplification
factor evaluated at a point not on the circle. For example, if we pick λ∆t = −1, we observe that
γ = 1/2 ≤ 1. Thus, the scheme is stable outside of the unit circle. Figure 21.7 shows the stability
diagram for the Euler Backward scheme. The scheme is unstable in the shaded region; it is stable
in the unshaded region; it is neutrally stable, |z̃j | = |z̃j−1|, on the unit circle. The unshaded region
(γ < 1) and the boundary of the shaded and unshaded regions (γ = 1) represent the absolute
stability region; the entire picture is denoted the absolute stability diagram.

To gain understanding of the stability diagram, let us consider the behavior of the Euler Back-
ward scheme for a few select values of λ∆t. First, we consider a stable homogeneous equation, with
λ = −1 < 0. We consider three different values of λ∆t, −0.5, −1.7, and −2.2. Figure 21.8(a) shows
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Figure 21.8: The behavior of the Euler Backward scheme for selected values of (λ∆t).

the three points on the stability diagram that correspond to these choices of λ∆t. All three points
lie in the unshaded region, which is a stable region. Figure 21.8(b) shows that all three numerical
solutions decay with time as expected. While the smaller ∆t results in a smaller error, all schemes
are stable and converge to the same steady state solution.

Begin Advanced Material

Next, we consider an unstable homogeneous equation, with λ = 1 > 0. We again consider
three different values of λ∆t, 0.5, 1.7, and 2.2. Figure 21.8(c) shows that two of these points lie
in the unstable region, while λ∆t = 2.2 lies in the stable region. Figure 21.8(d) confirms that the
solutions for λ∆t = 0.5 and 1.7 grow with time, while λ∆t = 2.2 results in a decaying solution.
The true solution, of course, grows exponentially with time. Thus, if the time step is too large
(specifically λ∆t > 2), then the Euler Backward scheme can produce a decaying solution even if
the true solution grows with time — which is undesirable; nevertheless, as ∆t → 0, we obtain
the correct behavior. In general, the interior of the absolute stability region should not include
λ∆t = 0. (In fact λ∆t = 0 should be on the stability boundary.)
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Figure 21.9: The absolute stability diagram for the Euler Forward scheme. The white area corre-
sponds to stability (the absolute stability region) and the gray area to instability.

End Advanced Material

Euler Forward

Let us now analyze the absolute stability characteristics of the Euler Forward scheme. Similar
to the Euler Backward scheme, we start with the homogeneous equation. The Euler Forward
discretization of the equation yields

z̃j − z̃j−1

∆t
= λz̃j−1 ⇒ z̃j = (1 + (λ∆t))z̃j−1 .

The stability boundary, on which the amplification factor is unity, is given by

γ = |1 + (λ∆t)| = 1 ⇒ (λ∆t) = e−iθ − 1 .

The stability boundary is a circle of unit radius centered at −1. Substitution of, for example,
λ∆t = −1/2, yields γ(λ∆t = −1/2) = 1/2, so the amplification is less than unity inside the circle.
The stability diagram for the Euler Forward scheme is shown in Figure 21.9.

As in the Euler Backward case, let us pick a few select values of λ∆t and study the behavior of the
Euler Forward scheme. The stability diagram and solution behavior for a stable ODE (λ = −1 < 0)
are shown in Figure 21.10(a) and 21.10(b), respectively. The cases with λ∆t = −0.5 and −1.7 lie
in the stable region of the stability diagram, while λ∆t = −2.2 lies in the unstable region. Due to
instability, the numerical solution for λ∆t = −2.2 diverges exponentially with time, even though
the true solution decays with time. The solution for λ∆t = −1.7 shows some oscillation, but the
magnitude of the oscillation decays with time, agreeing with the stability diagram. (For an unstable
ODE (λ = 1 > 0), Figure 21.10(c) shows that all time steps considered lie in the unstable region
of the stability diagram. Figure 21.10(d) confirms that all these choices of ∆t produce a growing
solution.)

21.1.8 Multistep Schemes

We have so far considered two schemes: the Euler Backward scheme and the Euler Forward scheme.
These two schemes compute the state ũj from the previous state ũj−1 and the source function
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Figure 21.10: The behavior of the Euler Forward scheme for selected values of λ∆t.
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evaluated at tj or tj−1. The two schemes are special cases of multistep schemes, where the solution
at the current time ũj is approximated from the previous solutions. In general, for an ODE of the
form

du

dt
= g(u, t) ,

a K-step multistep scheme takes the form

K∑
k=0

αkũ
j−k = ∆t

K∑
k=0

βkg
j−k, j = 1, . . . , J ,

ũj = u0 ,

where gj−k = g(ũj−k, tj−k). Note that the linear ODE we have been considering results from the
choice g(u, t) = λu + f(t). A K-step multistep scheme requires solutions (and derivatives) at K
previous time steps. Without loss of generality, we choose α0 = 1. A scheme is uniquely defined
by choosing 2K + 1 coefficients, αk, k = 1, . . . ,K, and βk, k = 0, . . . ,K.

Multistep schemes can be categorized into implicit and explicit schemes. If we choose β0 = 0,
then ũj does not appear on the right-hand side, resulting in an explicit scheme. As discussed before,
explicit schemes are only conditionally stable, but are computationally less expensive per step. If
we choose β0 6= 0, then ũj appears on the right-hand side, resulting in an implicit scheme. Implicit
schemes tend to be more stable, but are more computationally expensive per step, especially for a
system of nonlinear ODEs.

Let us recast the Euler Backward and Euler Forward schemes in the multistep method frame-
work.

Example 21.1.2 Euler Backward as a multistep scheme
The Euler Backward scheme is a 1-step method with the choices

α1 = −1, β0 = 1, and β1 = 0 .

This results in

ũj − ũj−1 = ∆tgj , j = 1, . . . , J .

·

Example 21.1.3 Euler Forward as a multistep scheme
The Euler Forward scheme is a 1-step method with the choices

α1 = −1, β0 = 0, and β1 = 1 .

This results in

ũj − ũj−1 = ∆tgj−1, j = 1, . . . , J .

·
Now we consider three families of multistep schemes: Adams-Bashforth, Adams-Moulton, and

Backward Differentiation Formulas.
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Adams-Bashforth Schemes

Adams-Bashforth schemes are explicit multistep time integration schemes (β0 = 0). Furthermore,
we restrict ourselves to

α1 = −1 and αk = 0, k = 2, . . . ,K .

The resulting family of the schemes takes the form

ũj = ũj−1 +
K∑
k=1

βkg
j−k .

Now we must choose βk, k = 1, . . .K, to define a scheme. To choose the appropriate values of βk,
we first note that the true solution u(tj) and u(tj−1) are related by

u(tj) = u(tj−1) +

∫ tj

tj−1

du

dt
(τ)dτ = u(tj−1) +

∫ tj

tj−1

g(u(τ), τ)dτ . (21.1)

Then, we approximate the integrand g(u(τ), τ), τ ∈ (tj−1, tj), using the values gj−k, k = 1, . . . ,K.
Specifically, we construct a (K − 1)th-degree polynomial p(τ) using the K data points, i.e.

p(τ) =
K∑
k=1

φk(τ)gj−k ,

where φk(τ), k = 1, . . . ,K, are the Lagrange interpolation polynomials defined by the points
tj−k, k = 1, . . . ,K. Recalling the polynomial interpolation theory from Unit I, we note that the
(K − 1)th-degree polynomial interpolant is Kth-order accurate for g(u(τ), τ) sufficiently smooth,
i.e.

p(τ) = g(u(τ), τ) +O(∆tK) .

(Note in fact here we consider “extrapolation” of our interpolant.) Thus, we expect the order of
approximation to improve as we incorporate more points given sufficient smoothness. Substitution
of the polynomial approximation of the derivative to Eq. (21.1) yields

u(tj) ≈ u(tj−1) +

∫ tj

tj−1

K∑
k=1

φk(τ)gj−kdτ = u(tj−1) +
K∑
k=1

∫ tj

tj−1

φk(τ)dτ gj−k .

To simplify the integral, let us consider the change of variable τ = tj − (tj − tj−1)τ̂ = tj − ∆tτ̂ .
The change of variable yields

u(tj) ≈ u(tj−1) + ∆t
K∑
k=1

∫ 1

0
φ̂k(τ̂)dτ̂ gj−k ,

where the φ̂k are the Lagrange polynomials associated with the interpolation points τ̂ = 1, 2, . . . ,K.
We recognize that the approximation fits the Adams-Bashforth form if we choose

βk =

∫ 1

0
φ̂k(τ̂)dτ̂ .

Let us develop a few examples of Adams-Bashforth schemes.
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Example 21.1.4 1-step Adams-Bashforth (Euler Forward)
The 1-step Adams-Bashforth scheme requires evaluation of β1. The Lagrange polynomial for this
case is a constant polynomial, φ̂1(τ̂) = 1. Thus, we obtain

β1 =

∫ 1

0
φ̂1(τ̂)dτ̂ =

∫ 1

0
1dτ̂ = 1 .

Thus, the scheme is

ũj = ũj−1 + ∆tgj−1 ,

which is the Euler Forward scheme, first-order accurate.

·

Example 21.1.5 2-step Adams-Bashforth
The 2-step Adams-Bashforth scheme requires specification of β1 and β2. The Lagrange interpolation
polynomials for this case are linear polynomials

φ̂1(τ̂) = −τ̂ + 2 and φ̂2(τ̂) = τ̂ − 1 .

It is easy to verify that these are the Lagrange polynomials because φ̂1(1) = φ̂2(2) = 1 and
φ̂1(2) = φ̂2(1) = 0. Integrating the polynomials

β1 =

∫ 1

0
φ1(τ̂)dτ̂ =

∫ 1

0
(−τ̂ + 2)dτ̂ =

3

2
,

β2 =

∫ 1

0
φ2(τ̂)dτ̂ =

∫ 1

0
(τ̂ − 1)dτ̂ = −1

2
.

The resulting scheme is

ũj = ũj−1 + ∆t

(
3

2
gj−1 − 1

2
gj−2

)
.

This scheme is second-order accurate.

·

Adams-Moulton Schemes

Adams-Moulton schemes are implicit multistep time integration schemes (β0 6= 0). Similar to
Adams-Bashforth schemes, we restrict ourselves to

α1 = −1 and αk = 0, k = 2, . . . ,K .

The Adams-Moulton family of the schemes takes the form

ũj = ũj−1 +

K∑
k=0

βkg
j−k .

We must choose βk, k = 1, . . . ,K to define a scheme. The choice of βk follows exactly the same
procedure as that for Adams-Bashforth. Namely, we consider the expansion of the form Eq. (21.1)
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and approximate g(u(τ), τ) by a polynomial. This time, we have K + 1 points, thus we construct
a Kth-degree polynomial

p(τ) =
K∑
k=0

φk(τ)gj−k ,

where φk(τ), k = 0, . . . ,K, are the Lagrange interpolation polynomials defined by the points tj−k,
k = 0, . . . ,K. Note that these polynomials are different from those for the Adams-Bashforth
schemes due to the inclusion of tj as one of the interpolation points. (Hence here we consider true
interpolation, not extrapolation.) Moreover, the interpolation is now (K + 1)th-order accurate.

Using the same change of variable as for Adams-Bashforth schemes, τ = tj −∆tτ̂ , we arrive at
a similar expression,

u(tj) ≈ u(tj−1) + ∆t

K∑
k=0

∫ 1

0
φ̂k(τ̂)dτ̂gj−k ,

for the Adams-Moulton schemes; here the φ̂k are the Kth-degree Lagrange polynomials defined by
the points τ̂ = 0, 1, . . . ,K. Thus, the βk are given by

βk =

∫ 1

0
φ̂k(τ̂)dτ̂ .

Let us develop a few examples of Adams-Moulton schemes.

Example 21.1.6 0-step Adams-Moulton (Euler Backward)
The 0-step Adams-Moulton scheme requires just one coefficient, β0. The “Lagrange” polynomial
is 0th degree, i.e. a constant function φ̂0(τ̂) = 1, and the integration of the constant function over
the unit interval yields

β0 =

∫ 1

0
φ̂0(τ̂)dτ̂ =

∫ 1

0
1dτ̂ = 1.

Thus, the 0-step Adams-Moulton scheme is given by

ũj = ũj−1 + ∆tgj ,

which in fact is the Euler Backward scheme. Recall that the Euler Backward scheme is first-order
accurate.

·

Example 21.1.7 1-step Adams-Moulton (Crank-Nicolson)
The 1-step Adams-Moulton scheme requires determination of two coefficients, β0 and β1. The
Lagrange polynomials for this case are linear polynomials

φ̂0(τ̂) = −τ + 1 and φ̂1(τ̂) = τ .

Integrating the polynomials,

β0 =

∫ 1

0
φ̂0(τ̂)dτ̂ =

∫ 1

0
(−τ + 1)dτ̂ =

1

2
,

β1 =

∫ 1

0
φ̂1(τ̂)dτ̂ =

∫ 1

0
τ̂ dτ̂ =

1

2
.
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The choice of βk yields the Crank-Nicolson scheme

ũj = ũj−1 + ∆t

(
1

2
gj +

1

2
gj−1

)
.

The Crank-Nicolson scheme is second-order accurate. We can view Crank-Nicolson as a kind of
“trapezoidal” rule.

·

Example 21.1.8 2-step Adams-Moulton
The 2-step Adams-Moulton scheme requires three coefficients, β0, β1, and β2. The Lagrange
polynomials for this case are the quadratic polynomials

φ̂0(τ̂) =
1

2
(τ̂ − 1)(τ̂ − 2) =

1

2
(τ̂2 − 3τ̂ + 2) ,

φ̂1(τ̂) = −τ̂(τ̂ − 2) = −τ̂2 + 2τ̂ ,

φ̂2(τ̂) =
1

2
τ̂(τ̂ − 1) =

1

2

(
τ̂2 − τ̂

)
.

Integrating the polynomials,

β0 =

∫ 1

0
φ̂0(τ̂)dτ̂ =

∫ 1

0

1

2
(τ̂2 − 3τ̂ + 2)τ̂ =

5

12

β1 =

∫ 1

0
φ̂1(τ̂)dτ̂ =

∫ 1

0
(−τ̂2 + 2τ̂)dτ̂ =

2

3
,

β2 =

∫ 1

0
φ̂2(τ̂)dτ̂ =

∫ 1

0

1

2

(
τ̂2 − τ̂

)
dτ̂ = − 1

12
.

Thus, the 2-step Adams-Moulton scheme is given by

ũj = ũj−1 + ∆t

(
5

12
gj +

2

3
gj−1 − 1

12
gj−2

)
.

This AM2 scheme is third-order accurate.

·

Convergence of Multistep Schemes: Consistency and Stability

Let us now introduce techniques for analyzing the convergence of a multistep scheme. Due to the
Dahlquist equivalence theorem, we only need to show that the scheme is consistent and stable.

To show that the scheme is consistent, we need to compute the truncation error. Recalling that
the local truncation error is obtained by substituting the exact solution to the difference equation
(normalized such that ũj has the coefficient of 1) and dividing by ∆t, we have for any multistep
schemes

τ jtrunc =
1

∆t

u(tj) +
K∑
k=1

αk u(tj−k)

− K∑
k=0

βk g(tj−k, u(tj−k)) .
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For simplicity we specialize our analysis to the Adams-Bashforth family, such that

τ jtrunc =
1

∆t

(
u(tj)− u(tj−1)

)
−

K∑
k=1

βk g(tj−k, u(tj−k)) .

We recall that the coefficients βk were selected to match the extrapolation from polynomial fitting.
Backtracking the derivation, we simplify the sum as follows

K∑
k=1

βk g(tj−k, u(tj−k)) =
K∑
k=1

∫ 1

0
φ̂k(τ̂)dτ̂ g(tj−k, u(tj−k))

=
K∑
k=1

1

∆t

∫ tj

tj−1

φk(τ)dτ g(tj−k, u(tj−k))

=
1

∆t

∫ tj

tj−1

 K∑
k=1

φk(τ) g(tj−k, u(tj−k))

 dτ
=

1

∆t

∫ tj

tj−1

p(τ)dτ .

We recall that p(τ) is a (K − 1)th-degree polynomial approximating g(τ, u(τ)). In particular, it is
a Kth-order accurate interpolation with the error O(∆tK). Thus,

τ jtrunc =
1

∆t

(
u(tj)− u(tj−1)

)
−

K∑
k=1

βk g(tj−k, u(tj−k))

=
1

∆t

(
u(tj)− u(tj−1)

)
− 1

∆t

∫ tj

tj−1

g(τ, u(τ))dτ +
1

∆t

∫ tj

jj−1

O(∆tK)dτ

=
1

∆t

[
u(tj)− u(tj−1)−

∫ tj

tj−1

g(τ, u(τ))dτ

]
+O(∆tK)

= O(∆tK) .

Note that the term in the bracket vanishes from g = du/dt and the fundamental theorem of calculus.
The truncation error of the scheme is O(∆tK). In particular, since K > 0, τtrunc → 0 as ∆t → 0
and the Adams-Bashforth schemes are consistent. Thus, if the schemes are stable, they would
converge at ∆tK .

The analysis of stability relies on a solution technique for difference equations. We first restrict
ourselves to linear equation of the form g(t, u) = λu. By rearranging the form of difference equation
for the multistep methods, we obtain

K∑
k=0

(αk − (λ∆t) βk) ũ
j−k = 0, j = 1, . . . , J .
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The solution to the difference equation is governed by the initial condition and the K roots of the
polynomial

q(x) =
K∑
k=0

(αk − (λ∆t) βk)x
K−k .

In particular, for any initial condition, the solution will exhibit a stable behavior if all roots rk,
k = 1, . . . ,K, have magnitude less than or equal to unity. Thus, the absolute stability condition
for multistep schemes is

(λ∆t) such that |rK | ≤ 1, k = 1, . . . ,K ,

where rk, k = 1, . . . ,K are the roots of q.

Example 21.1.9 Stability of the 2-step Adams-Bashforth scheme
Recall that the 2-step Adams-Bashforth results from the choice

α0 = 1, α1 = −1, α2 = 0, β0 = 0, β1 =
3

2
, and β2 = −1

2
.

The stability of the scheme is governed by the roots of the polynomial

q(x) =
2∑

k=0

(αk − (λ∆t) βk)x
2−k = x2 +

(
−1− 3

2
(λ∆t)

)
x+

1

2
(λ∆t) = 0 .

The roots of the polynomial are given by

r1,2 =
1

2

1 +
3

2
(λ∆t)±

√(
1 +

3

2
(λ∆t)

)2

− 2(λ∆t)

 .
We now look for (λ∆t) such that |r1| ≤ 1 and |r2| ≤ 1.

It is a simple matter to determine if a particular λ∆t is inside, on the boundary of, or outside
the absolute stability region. For example, for λ∆t = −1 we obtain r1 = −1, r2 = 1/2 and hence —
since |r1| = 1 — λ∆t = −1 is in fact on the boundary of the absolute stability diagram. Similarly,
it is simple to confirm that λ∆t = −1/2 yields both r1 and r2 of modulus strictly less than 1,
and hence λ∆t = −1/2 is inside the absolute stability region. We can thus in principle check each
point λ∆t (or enlist more sophisticated solution procedures) in order to construct the full absolute
stability diagram.

We shall primarily be concerned with the use of the stability diagram rather than the construc-
tion of the stability diagram — which for most schemes of interest are already derived and well
documented. We present in Figure 21.11(b) the absolute stability diagram for the 2-step Adams-
Bashforth scheme. For comparison we show in Figure 21.11(a) the absolute stability diagram for
Euler Forward, which is the 1-step Adams-Bashforth scheme. Note that the stability region of the
Adams-Bashforth schemes are quite small; in fact the stability region decreases further for higher
order Adams-Bashforth schemes. Thus, the method is only well suited for non-stiff equations.

·

Example 21.1.10 Stability of the Crank-Nicolson scheme
Let us analyze the absolute stability of the Crank-Nicolson scheme. Recall that the stability of a
multistep scheme is governed by the roots of the polynomial

q(x) =

K∑
k=0

(αk − λ∆t βk) x
K−k .
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Figure 21.11: The stability diagrams for Adams-Bashforth methods.

For the Crank-Nicolson scheme, we have α0 = 1, α1 = −1, β0 = 1/2, and β1 = 1/2. Thus, the
polynomial is

q(x) =

(
1− 1

2
(λ∆t)

)
x+

(
−1− 1

2
(λ∆t)

)
.

The root of the polynomial is

r =
2 + (λ∆t)

2− (λ∆t)
.

To solve for the stability boundary, let us set |r| = 1 = |eiθ| and solve for (λ∆t), i.e.

2 + (λ∆t)

2− (λ∆t)
= eiθ ⇒ (λ∆t) =

2(eiθ − 1)

eiθ + 1
=

i2 sin(θ)

1 + cos(θ)
.

Thus, as θ varies from 0 to π/2, λ∆t varies from 0 to i∞ along the imaginary axis. Similarly, as
θ varies from 0 to −π/2, λ∆t varies from 0 to −i∞ along the imaginary axis. Thus, the stability
boundary is the imaginary axis. The absolute stability region is the entire left-hand (complex)
plane.

The stability diagrams for the 1- and 2-step Adams-Moulton methods are shown in Figure 21.11.
The Crank-Nicolson scheme shows the ideal stability diagram; it is stable for all stable ODEs (λ ≤ 0)
and unstable for all unstable ODEs (λ > 0) regardless of the time step selection. (Furthermore,
for neutrally stable ODEs, λ = 0, Crank-Nicolson is neutrally stable — γ, the amplification factor,
is unity.) The selection of time step is dictated by the accuracy requirement rather than stability
concerns.1 Despite being an implicit scheme, AM2 is not stable for all λ∆t in the left-hand plane;
for example, along the real axis, the time step is limited to −λ∆t ≤ 6. While the stability
region is larger than, for example, the Euler Forward scheme, the stability region of AM2 is rather
disappointing considering the additional computational cost associated with each step of an implicit
scheme.

·
1However, the Crank-Nicolson method does exhibit undesirable oscillations for λ∆t → − (real) ∞, and the lack

of any dissipation on the imaginary axis can also sometimes cause difficulties. Nobody’s perfect.
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(b) 2-step Adams-Moulton (AM2)

Figure 21.12: The stability diagrams for 2-step Adams-Moulton methods.

Backward Differentiation Formulas

The Backward Differentiation Formulas are implicit multistep schemes that are well suited for stiff
problems. Unlike the Adams-Bashforth and Adams-Moulton schemes, we restrict ourselves to

βk = 0, k = 1, . . . ,K .

Thus, the Backward Differential Formulas are of the form

ũj +

K∑
k=1

αkũ
j−k = ∆t β0g

j .

Our task is to find the coefficients αk, k = 1, . . . ,K, and β0. We first construct a Kth-degree
interpolating polynomial using ũj−k, k = 0, . . . ,K, to approximate u(t), i.e.

u(t) ≈
K∑
k=0

φk(t)ũ
j−k ,

where φk(t), k = 0, . . . ,K, are the Lagrange interpolation polynomials defined at the points tj−k,
k = 0, . . . ,K; i.e., the same polynomials used to develop the Adams-Moulton schemes. Differenti-
ating the function and evaluating it at t = tj , we obtain

du

dt

∣∣∣∣
tj
≈

K∑
k=0

dφk
dt

∣∣∣∣
tj
ũj−k .

Again, we apply the change of variable of the form t = tj −∆tτ̂ , so that

du

dt

∣∣∣∣
tj
≈

K∑
k=0

dφ̂k
dτ̂

∣∣∣∣∣
0

dτ̂

dt

∣∣∣∣
tj
ũj−k = − 1

∆t

K∑
k=0

dφ̂k
dτ̂

∣∣∣∣∣
0

ũj−k .

Recalling gj = g(u(tj), tj) = du/dt|tj , we set

ũj +
K∑
k=1

αkũ
j−k ≈ ∆tβ0

− 1

∆t

K∑
k=0

dφ̂k
dτ̂

∣∣∣∣∣
0

ũj−k

 = −β0

K∑
k=0

dφ̂k
dτ̂

∣∣∣∣∣
0

ũj−k .
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Matching the coefficients for ũj−k, k = 0, . . . ,K, we obtain

1 = −β0
dφ̂k
dτ̂

∣∣∣∣∣
0

αk = −β0
dφ̂k
dτ̂

∣∣∣∣∣
0

, k = 1, . . . ,K .

Let us develop a few Backward Differentiation Formulas.

Example 21.1.11 1-step Backward Differentiation Formula (Euler Backward)
The 1-step Backward Differentiation Formula requires specification of β0 and α1. As in the 1-step
Adams-Moulton scheme, the Lagrange polynomials for this case are

φ̂0(τ̂) = −τ + 1 and φ̂1(τ̂) = τ .

Differentiating and evaluating at τ̂ = 0

β0 = −

 dφ̂0

dτ̂

∣∣∣∣∣
0

−1

= −(−1)−1 = 1 ,

α1 = −β0
dφ̂1

dτ̂

∣∣∣∣∣
0

= −1 .

The resulting scheme is

ũj − ũj−1 = ∆tgj ,

which is the Euler Backward scheme. Again.

·

Example 21.1.12 2-step Backward Differentiation Formula
The 2-step Backward Differentiation Formula requires specification of β0, α1, and α2. The Lagrange
polynomials for this case are

φ̂0(τ̂) =
1

2
(τ̂2 − 3τ̂ + 2) ,

φ̂1(τ̂) = −τ̂2 + 2τ̂ ,

φ̂2(τ̂) =
1

2

(
τ̂2 − τ̂

)
.

Differentiation yields

β0 = −

 dφ̂0

dτ̂

∣∣∣∣∣
0

−1

=
2

3
,

α1 = −β0
dφ̂1

dτ̂

∣∣∣∣∣
0

= −2

3
· 2 = −4

3
,

α2 = −β0
dφ̂2

dτ̂

∣∣∣∣∣
0

= −2

3
· −1

2
=

1

3
.
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Figure 21.13: The absolute stability diagrams for Backward Differentiation Formulas.

The resulting scheme is

ũj − 4

3
ũj−1 +

1

3
ũj−2 =

2

3
∆tgj .

The 2-step Backward Differentiation Formula (BDF2) is unconditionally stable and is second-order
accurate.

·

Example 21.1.13 3-step Backward Differentiation Formula
Following the same procedure, we can develop the 3-step Backward Differentiation Formula (BDF3).
The scheme is given by

ũj − 18

11
ũj−1 +

9

11
ũj−2 − 2

11
ũj−3 =

6

11
∆tgj .

The scheme is unconditionally stable and is third-order accurate.

·
The stability diagrams for the 1-, 2-, and 3-step Backward Differentiation Formulas are shown

in Figure 21.13. The BDF1 and BDF2 schemes are A-stable (i.e., the stable region includes the
entire left-hand plane). Unfortunately, BDF3 is not A-stable; in fact the region of instability in the
left-hand plane increases for the higher-order BDFs. However, for stiff engineering systems whose
eigenvalues are clustered along the real axis, the BDF methods are attractive choices.

21.1.9 Multistage Schemes: Runge-Kutta

Another family of important and powerful integration schemes are multistage schemes, the most
famous of which are the Runge-Kutta schemes. While a detailed analysis of the Runge-Kutta
schemes is quite involved, we briefly introduce the methods due to their prevalence in the scientific
and engineering context.

Unlike multistep schemes, multistage schemes only require the solution at the previous time
step ũj−1 to approximate the new state ũj at time tj . To develop an update formula, we first
observe that

u(tj) = ũ(tj−1) +

∫ tj

tj−1

du

dt
(τ)dτ = ũ(tj−1) +

∫ tj

tj−1

g(u(τ), τ)dτ .

341



Clearly, we cannot use the formula directly to approximate u(tj) because we do not know g(u(τ), τ),
τ ∈ ]tj−1, tj [ . To derive the Adams schemes, we replaced the unknown function g with its polynomial
approximation based on g evaluated at K previous time steps. In the case of Runge-Kutta, we
directly apply numerical quadrature to the integral to obtain

u(tj) ≈ u(tj−1) + ∆t
K∑
k=1

bk g
(
u(tj−1 + ck∆t), t

j−1 + ck∆t
)
,

where the bk are the quadrature weights and the tj + ck∆t are the quadrature points. We need to
make further approximations to define a scheme, because we do not know the values of u at the K
stages, u(tj + ck∆t), k = 1, . . . ,K. Our approach is to replace the K stage values u(tj−1 + ck∆t)
by approximations vk and then to form the K stage derivatives as

Gk = g
(
vk, t

j−1 + ck∆t
)
.

It remains to specify the approximation scheme.
For an explicit Runge-Kutta scheme, we construct the kth-stage approximation as a linear

combination of the previous stage derivatives and ũj−1, i.e.

vk = ũj−1 + ∆t
(
Ak1G1 +Ak2G2 + · · ·+Ak,k−1Gk−1

)
.

Because this kth-stage estimate only depends on the previous stage derivatives, we can compute
the stage values in sequence,

v1 = ũj−1 (⇒ G1) ,

v2 = ũj−1 + ∆tA21G1 (⇒ G2) ,

v3 = ũj−1 + ∆tA31G1 + ∆tA32G2 (⇒ G3) ,

...

vK = ũj−1 + ∆t
∑K−1

k=1 AKkGk (⇒ GK) .

Once the stage values are available, we estimate the integral by

ũj = ũj−1 + ∆t

K∑
k=1

bk Gk ,

and proceed to the next time step.
Note that a Runge-Kutta scheme is uniquely defined by the choice of the vector b for quadrature

weight, the vector c for quadrature points, and the matrix A for the stage reconstruction. The
coefficients are often tabulated in a Butcher table, which is a collection of the coefficients of the
form

c A

bT
.

For explicit Runge-Kutta methods, we require Aij = 0, i ≤ j. Let us now introduce two popular
explicit Runge-Kutta schemes.
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Example 21.1.14 Two-stage Runge-Kutta
A popular two-stage Runge-Kutta method (RK2) has the Butcher table

0
1
2

1
2

0 1

.

This results in the following update formula

v1 = ũj−1, G1 = g(v1, t
j−1) ,

v2 = ũj−1 + 1
2∆tG1, G2 = g

(
v2, t

j−1 +
1

2
∆t

)
,

ũj = ũj + ∆tG2 .

The two-stage Runge-Kutta scheme is conditionally stable and is second-order accurate. We might
view this scheme as a kind of midpoint rule.

·

Example 21.1.15 Four-stage Runge-Kutta
A popular four-stage Runge-Kutta method (RK4) — and perhaps the most popular of all Runge-
Kutta methods — has the Butcher table of the form

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

.

This results in the following update formula

v1 = ũj−1, G1 = g(v1, t
j−1) ,

v2 = ũj−1 + 1
2∆tG1, G2 = g

(
v2, t

j−1 +
1

2
∆t

)
,

v3 = ũj−1 + 1
2∆tG2, G3 = g

(
v3, t

j−1 +
1

2
∆t

)
,

v4 = ũj−1 + ∆tG3, G4 = g
(
v4, t

j−1 + ∆t
)
,

ũj = ũj−1 + ∆t

(
1

6
G1 +

1

3
G2 +

1

3
G3 +

1

6
G4

)
.

The four-stage Runge-Kutta scheme is conditionally stable and is fourth-order accurate.

·
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The accuracy analysis of the Runge-Kutta schemes is quite involved and is omitted here. There
are various choices of coefficients that achieve pth-order accuracy using p stages for p ≤ 4. It
is also worth noting that even though we can achieve fourth-order accuracy using a four-stage
Runge-Kutta method, six stages are necessary to achieve fifth-order accuracy.

Explicit Runge-Kutta methods required that a stage value is a linear combination of the previous
stage derivatives. In other words, the A matrix is lower triangular with zeros on the diagonal. This
made the calculation of the state values straightforward, as we could compute the stage values in
sequence. If we remove this restriction, we arrive at family of implicit Runge-Kutta methods (IRK).
The stage value updates for implicit Runge-Kutta schemes are fully coupled, i.e.

vk = ũj−1 + ∆t
K∑
i=1

AkiGi, k = 1, . . . ,K .

In other words, the matrix A is full in general. Like other implicit methods, implicit Runge-Kutta
schemes tend to be more stable than their explicit counterparts (although also more expensive per
time step). Moreover, for all K, there is a unique IRK method that achieves 2K order of accuracy.
Let us introduce one such scheme.

Example 21.1.16 Two-stage Gauss-Legendre Implicit Runge-Kutta
The two-stage Gauss-Legendre Runge-Kutta method2 (GL-IRK2) is described by the Butcher table

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

.

To compute the update we must first solve a system of equations to obtain the stage values v1 and
v2

v1 = ũj−1 +A11∆tG1 +A12∆G2 ,

v2 = ũj−1 +A21∆tG1 +A12∆G2 ,

or

v1 = ũj−1 +A11∆tg(v1, t
j−1 + c1∆t) +A12∆tg(v2, t

j−1 + c2∆t) ,

v2 = ũj−1 +A21∆tg(v1, t
j−1 + c1∆t) +A22∆tg(v2, t

j−1 + c2∆t) ,

where the coefficients A and c are provided by the Butcher table. Once the stage values are
computed, we compute ũj according to

ũj = ũj−1 + ∆t
(
b1 g(v1, t

j−1 + c1∆t) + b2 g(v2, t
j−1 + c2∆t)

)
,

where the coefficients b are given by the Butcher table.
The two-stage Gauss-Legendre Runge-Kutta scheme is A-stable and is fourth-order accurate.

While the method is computationally expensive and difficult to implement, the A-stability and
fourth-order accuracy are attractive features for certain applications.

2The naming is due to the use of the Gauss quadrature points, which are the roots of Legendre polynomials on
the unit interval.
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Figure 21.14: The absolute stability diagrams for the Runge-Kutta family of schemes.

·
There is a family of implicit Runge-Kutta methods called diagonally implicit Runge-Kutta

(DIRK). These methods have an A matrix that is lower triangular with the same coefficients
in each diagonal element. This family of methods inherits the stability advantage of IRK schemes
while being computationally more efficient than other IRK schemes for nonlinear systems, as we
can incrementally update the stages.

The stability diagrams for the three Runge-Kutta schemes presented are shown in Figure 21.14.
The two explicit Runge-Kutta methods, RK2 and RK4, are not A-stable. The time step along the
real axis is limited to −λ∆t ≤ 2 for RK2 and −λ∆t . 2.8 for RK4. However, the stability region
for the explicit Runge-Kutta schemes are considerably larger than the Adams-Bashforth family of
explicit schemes. While the explicit Runge-Kutta methods are not suited for very stiff systems,
they can be used for moderately stiff systems. The implicit method, GL-IRK2, is A-stable; it also
correctly exhibits growing behavior for unstable systems.

Figure 21.15 shows the error behavior of the Runge-Kutta schemes applied to du/dt = −4u.
The higher accuracy of the Runge-Kutta schemes compared to the Euler Forward scheme is evident
from the solution. The error convergence plot confirms the theoretical convergence rates for these
methods.

21.2 Scalar Second-Order Linear ODEs

21.2.1 Model Problem

Let us consider a canonical second-order ODE,

m
d2u

dt2
+ c

du

dt
+ ku = f(t), 0 < t < tf ,

u(0) = u0 ,

du

dt
(0) = v0 .

The ODE is second order, because the highest derivative that appears in the equation is the second
derivative. Because the equation is second order, we now require two initial conditions: one for
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Figure 21.15: The error convergence behavior for the Runge-Kutta family of schemes applied to
du/dt = −4u. Here e(t = 1) = |u(tj)− ũj | for tj = j∆t = 1.

displacement, and one for velocity. It is a linear ODE because the equation is linear with respect
to u and its derivatives.

A typical spring-mass-damper system is governed by this second-order ODE, where u is the
displacement, m is the mass, c is the damping constant, k is the spring constant, and f is the
external forcing. This system is of course a damped oscillator, as we now illustrate through the
classical solutions.

21.2.2 Analytical Solution

Homogeneous Equation: Undamped

Let us consider the undamped homogeneous case, with c = 0 and f = 0,

m
d2u

dt2
+ ku = 0, 0 < t < tf ,

u(0) = u0 ,

du

dt
(0) = v0 .

To solve the ODE, we assume solutions of the form eλt, which yields

(mλ2 + k) eλt = 0 .

This implies that mλ2 + k = 0, or that λ must be a root of the characteristic polynomial

p(λ) = mλ2 + k = 0 ⇒ λ1,2 = ±i
√
k

m
.

Let us define the natural frequency , ωn ≡
√
k/m. The roots of the characteristic polynomials are

then λ1,2 = ±iωn. The solution to the ODE is thus of the form

u(t) = αeiωnt + βe−iωnt .
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Figure 21.16: Response of undamped spring-mass systems.

Rearranging the equation,

u(t) = αeiωnt + βe−iωnt =
α+ β

2
(eiωnt + e−iωnt) +

α− β
2

(eiωnt − e−iωnt)

= (α+ β) cos(ωnt) + i(α− β) sin(ωnt) .

Without loss of generality, let us redefine the coefficients by c1 = α + β and c2 = i(α − β). The
general form of the solution is thus

u(t) = c1 cos(ωnt) + c2 sin(ωnt) .

The coefficients c1 and c2 are specified by the initial condition. In particular,

u(t = 0) = c1 = u0 ⇒ c1 = u0 ,

du

dt
(t = 0) = c2ωn = v0 ⇒ c2 =

v0

ωn
.

Thus, the solution to the undamped homogeneous equation is

u(t) = u0 cos(ωnt) +
v0

ωn
sin(ωnt) ,

which represents a (non-decaying) sinusoid.

Example 21.2.1 Undamped spring-mass system
Let us consider two spring-mass systems with the natural frequencies ωn = 1.0 and 2.0. The
responses of the systems to initial displacement of u(t = 0) = 1.0 are shown in Figure 21.16. As
the systems are undamped, the amplitudes of the oscillations do not decay with time.

·
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Homogeneous Equation: Underdamped

Let us now consider the homogeneous case (f = 0) but with finite (but weak) damping

m
d2u

dt2
+ c

du

dt
+ ku = 0, 0 < t < tf ,

u(0) = u0 ,

du

dt
(0) = v0 .

To solve the ODE, we again assume behavior of the form u = eλt. Now the roots of the characteristic
polynomial are given by

p(λ) = mλ2 + cλ+ k = 0 ⇒ λ1,2 = − c

2m
±
√(

c

2m

)2

− k

m
.

Let us rewrite the roots as

λ1,2 = − c

2m
±
√(

c

2m

)2

− k

m
= −

√
k

m

c

2
√
mk
±
√
k

m

√
c2

4mk
− 1 .

For convenience, let us define the damping ratio as

ζ =
c

2
√
mk

=
c

2mωn
.

Together with the definition of natural frequency, ωn =
√
k/m, we can simplify the roots to

λ1,2 = −ζωn ± ωn
√
ζ2 − 1 .

The underdamped case is characterized by the condition

ζ2 − 1 < 0 ,

i.e., ζ < 1.
In this case, the roots can be conveniently expressed as

λ1,2 = −ζωn ± iωn
√

1− ζ2 = −ζωn ± iωd ,

where ωd ≡ ωn
√

1− ζ2 is the damped frequency. The solution to the underdamped homogeneous
system is

u(t) = αe−ζωnt+iωdt + βe−ζωnt−iωdt .

Using a similar technique as that used for the undamped case, we can simplify the expression to

u(t) = e−ζωnt
(
c1 cos(ωdt) + c2 sin(ωdt)

)
.

Substitution of the initial condition yields

u(t) = e−ζωnt
(
u0 cos(ωdt) +

v0 + ζωnu0

ωd
sin(ωdt)

)
.

Thus, the solution is sinusoidal with exponentially decaying amplitude. The decay rate is set by
the damping ratio, ζ. If ζ � 1, then the oscillation decays slowly — over many periods.
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Figure 21.17: Response of underdamped spring-mass-damper systems.

Example 21.2.2 Underdamped spring-mass-damper system
Let us consider two underdamped spring-mass-damper systems with

System 1: ωn = 1.0 and ζ = 0.1

System 2: ωn = 1.0 and ζ = 0.5 .

The responses of the systems to initial displacement of u(t = 0) = 1.0 are shown in Figure 21.17.
Unlike the undamped systems considered in Example 21.2.1, the amplitude of the oscillations decays
with time; the oscillation of System 2 with a higher damping coefficient decays quicker than that
of System 1.

·

Homogeneous Equation: Overdamped

In the underdamped case, we assumed ζ < 1. If ζ > 1, then we have an overdamped system. In
this case, we write the roots as

λ1,2 = −ωn
(
ζ ±

√
ζ2 − 1

)
,

both of which are real. The solution is then given by

u(t) = c1e
λ1t + c2e

λ2t .

The substitution of the initial conditions yields

c1 =
λ2u0 − v0

λ2 − λ1
and c2 =

−λ1u0 + v0

λ2 − λ1
.

The solution is a linear combination of two exponentials that decay with time constants of 1/|λ1|
and 1/|λ2|, respectively. Because |λ1| > |λ2|, |λ2| dictates the long time decay behavior of the
system. For ζ →∞, λ2 behaves as −ωn/(2ζ) = −k/c.
Example 21.2.3 Overdamped spring-mass-damper system
Let us consider two overdamped spring-mass-damper systems with

System 1: ωn = 1.0 and ζ = 1.0

System 2: ωn = 1.0 and ζ = 5.0 .
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Figure 21.18: Response of overdamped spring-mass-damper systems.

The responses of the systems to initial displacement of u(t = 0) = 1.0 are shown in Figure 21.17.
As the systems are overdamped, they exhibit non-oscillatory behaviors. Note that the oscillation
of System 2 with a higher damping coefficient decays more slowly than that of System 1. This is
in contrast to the underdamped cases considered in Example 21.2.2, in which the oscillation of the
system with a higher damping coefficient decays more quickly.

·

Sinusoidal Forcing

Let us consider a sinusoidal forcing of the second-order system. In particular, we consider a system
of the form

m
d2u

dt2
+ c

du

dt
+ ku = A cos(ωt) .

In terms of the natural frequency and the damping ratio previously defined, we can rewrite the
system as

d2u

dt2
+ 2ζωn

du

dt
+ ω2

nu =
A

m
cos(ωt) .

A particular solution is of the form

up(t) = α cos(ωt) + β sin(ωt) .

Substituting the assumed form of particular solution into the governing equation, we obtain

0 =
d2up
dt2

+ 2ζωn
dup
dt

+ ω2
nup −

A

m
cos(ωt)

= − αω2 cos(ωt)− βω2 sin(ωt) + 2ζωn(−αω sin(ωt) + βω cos(ωt))

+ ω2
n(α cos(ωt) + β sin(ωt))−A cos(ωt) .
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Figure 21.19: The variation in the amplification factor for the sinusoidally forced system.

We next match terms in sin and cos to obtain

α(ω2
n − ω2) + β(2ζωωn) =

A

m
,

β(ω2
n − ω2)− α(2ζωωn) = 0 ,

and solve for the coefficients,

α =
(ω2
n − ω2)

(ω2
n − ω2)2 + (2ζωωn)2

A

m
=

1− r2

(1− r2)2 + (2ζr)2

A

mω2
n

=
1− r2

(1− r2)2 + (2ζr)2

A

k
,

β =
(2ζωωn)

(ω2
n − ω2)2 + (2ζωωn)2

A

m
=

2ζr

(1− r2)2 + (2ζr)2

A

mω2
n

=
2ζr

(1− r2)2 + (2ζr)2

A

k
,

where r ≡ ω/ωn is the ratio of the forced to natural frequency.
Using a trigonometric identity, we may compute the amplitude of the particular solution as

Ap =
√
α2 + β2 =

√
(1− r2)2 + (2ζr)2

(1− r2)2 + (2ζr)2

A

k
=

1√
(1− r2)2 + (2ζr)2

A

k
.

Note that the magnitude of the amplification varies with the frequency ratio, r, and the damping
ratio, ζ. This variation in the amplification factor is plotted in Figure 21.19. For a given ζ, the
amplification factor is maximized at r = 1 (i.e., ωn = ω), and the peak amplification factor is
1/(2ζ). This increase in the magnitude of oscillation near the natural frequency of the system is
known as resonance. The natural frequency is clearly crucial in understanding the forced response
of the system, in particular for lightly damped systems.3

21.3 System of Two First-Order Linear ODEs

It is possible to directly numerically tackle the second-order system of Section 21.2 for example
using Newmark integration schemes. However, we shall focus on a state-space approach which is
much more general and in fact is the basis for numerical solution of systems of ODEs of virtually
any kind.

3 Note that for ζ = 0 (which in fact is not realizable physically in any event), the amplitude is only infinite as
t→∞; in particular, in resonant conditions, the amplitude will grow linearly in time.
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21.3.1 State Space Representation of Scalar Second-Order ODEs

In this section, we develop a state space representation of the canonical second-order ODE. Recall
that the ODE of interest is of the form

d2u

dt2
+ 2ζωn

du

dt
+ ω2

nu =
1

m
f(t), 0 < t < tf ,

u(0) = u0 ,

du

dt
(0) = v0 .

Because this is a second-order equation, we need two variables to fully describe the state of the
system. Let us choose these state variables to be

w1(t) = u(t) and w2(t) =
du

dt
(t) ,

corresponding to the displacement and velocity, respectively. We have the trivial relationship
between w1 and w2

dw1

dt
=
du

dt
= w2 .

Furthermore, the governing second-order ODE can be rewritten in terms of w1 and w2 as

dw2

dt
=

d

dt

du

dt
=
d2u

dt2
− 2ζωn

du

dt
= −ω2

nu+
1

m
f = −2ζωnw2 − ω2

nw1 +
1

m
f .

Together, we can rewrite the original second-order ODE as a system of two first-order ODEs,-

d

dt

(
w1

w2

)
=

(
w2

−ω2
nw1 − 2ζωnw2 + 1

m f

)
.

This equation can be written in the matrix form

d

dt

(
w1

w2

)
=

(
0 1

−ω2
n −2ζωn

)
︸ ︷︷ ︸

A

(
w1

w2

)
+

(
0

1
m f

)
(21.2)

with the initial condition

w1(0) = u0 and w2(0) = v0 .

If we define w = (w1 w2)T and F = (0 1
mf)T, then

dw

dt
= Aw + F, w(t = 0) = w0 =

(
u0

v0

)
, (21.3)

succinctly summarizes the “state-space” representation of our ODE.
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Solution by Modal Expansion

To solve this equation, we first find the eigenvalues of A. We recall that the eigenvalues are the
roots of the characteristic equation p(λ;A) = det(λI−A), where det refers to the determinant. (In
actual practice for large systems the eigenvalues are not computed from the characteristic equation.
In our 2× 2 case we obtain

p(λ;A) = det(λI −A) = det

(
λ −1

ω2
n λ+ 2ζωn

)
= λ2 + 2ζωnλ+ ω2

n .

The eigenvalues, the roots of characteristic equation, are thus

λ1,2 = −ζωn ± ωn
√
ζ2 − 1 .

We shall henceforth assume that the system is underdamped (i.e., ζ < 1), in which case it is more
convenient to express the eigenvalues as

λ1,2 = −ζωn ± iωn
√

1− ζ2 .

Note since the eigenvalue has non-zero imaginary part the solution will be oscillatory and since the
real part is negative (left-hand of the complex plane) the solution is stable. We now consider the
eigenvectors.

Towards that end, we first generalize our earlier discussion of vectors of real-valued components
to the case of vectors of complex-valued components. To wit, if we are given two vectors v ∈ Cm×1,
w ∈ Cm×1 — v and w are each column vectors with m complex entries — the inner product is now
given by

β = vHw =
m∑
j=1

v∗j wj , (21.4)

where β is in general complex, H stands for Hermitian (complex transpose) and replaces T for
transpose, and ∗ denotes complex conjugate — so vj = Real(vj) + i Imag(vj) and v∗j = Real(vj)−
i Imag(vj), for i =

√
−1.

The various concepts built on the inner product change in a similar fashion. For example,
two complex-valued vectors v and w are orthogonal if vHw = 0. Most importantly, the norm of
complex-valued vector is now given by

‖v‖ =
√
vHv =

 m∑
j=1

v∗j vj

1/2

=

 m∑
j=1

|vj |2
1/2

, (21.5)

where | · | denotes the complex modulus; |vj |2 = v∗j vj = (Real(vj))
2 + (Imag(vj))

2. Note the
definition (21.5) of the norm ensures that ‖v‖ is a non-negative real number, as we would expect
of a length.

To obtain the eigenvectors, we must find a solution to the equation

(λI −A)χ = 0 (21.6)

for λ = λ1 (⇒ eigenvector χ1 ∈ C2) and λ = λ2 (⇒ eigenvector χ2 ∈ C2). The equations (21.6)
will have a solution since λ has been chosen to make (λI −A) singular: the columns of λI −A are
not linearly independent, and hence there exists a (in fact, many) nontrivial linear combination,
χ 6= 0, of the columns of λI −A which yields the zero vector.
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Proceeding with the first eigenvector, we write (λ1I −A)χ1 = 0 as −ζωn + iωn
√

1− ζ2 −1

ω2
n ζωn + iωn

√
1− ζ2

( χ1
1

χ1
2

)
=

 0

0


to obtain (say, setting χ1

1 = c),

χ1 = c


1

−ω2
n

ζωn + iωn
√

1− ζ2

 .

We now choose c to achieve ‖χ1‖ = 1, yielding

χ1 =
1√

1 + ω2
n

 1

−ζωn + iωn
√

1− ζ2

 .

In a similar fashion we obtain from (λ2I −A)χ2 = 0 the second eigenvector

χ2 =
1√

1 + ω2
n

 1

−ζωn − iωn
√

1− ζ2

 ,

which satisfies ‖χ2‖ = 1.
We now introduce two additional vectors, ψ1 and ψ2. The vector ψ1 is chosen to satisfy

(ψ1)Hχ2 = 0 and (ψ1)Hχ1 = 1, while the vector ψ2 is chosen to satisfy (ψ2)Hχ1 = 0 and (ψ2)Hχ2 =
1. We find, after a little algebra,

ψ1 =

√
1 + ω2

n

2iωn
√

1− ζ2

 −ζωn + iωn
√

1− ζ2

−1

 , ψ2 =

√
1 + ω2

n

−2iωn
√

1− ζ2

 −ζωn − iωn√1− ζ2

−1

 .

These choices may appear mysterious, but in a moment we will see the utility of this “bi-orthogonal”
system of vectors. (The steps here in fact correspond to the “diagonalization” of A.)

We now write w as a linear combination of the two eigenvectors, or “modes,”

w(t) = z1(t) χ1 + z2(t) χ2

= S z(t) (21.7)

where
S = (χ1 χ2)

is the 2× 2 matrix whose jth-column is given by the jth-eigenvector, χj . We next insert (21.7) into
(21.3) to obtain

χ1 dz1

dt
+ χ2dz2

dt
= A(χ1z1 + χ2z2) + F , (21.8)

(χ1z1 + χ2z2)(t = 0) = w0 . (21.9)

We now take advantage of the ψ vectors.
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First we multiply (21.8) by (ψ1)H and take advantage of (ψ1)H χ2 = 0, (ψ1)H χ1 = 1, and
Aχj = λjχ

j to obtain
dz1

dt
= λ1 z1 + (ψ1)H F ; (21.10)

if we similarly multiply (21.9) we obtain

z1(t = 0) = (ψ1)H w0 . (21.11)

The same procedure but now with (ψ2)H rather than (ψ1)H gives

dz2

dt
= λ2 z2 + (ψ2)H F ; (21.12)

z2(t = 0) = (ψ2)H w0 . (21.13)

We thus observe that our modal expansion reduces our coupled 2×2 ODE system into two decoupled
ODEs.

The fact that λ1 and λ2 are complex means that z1 and z2 are also complex, which might appear
inconsistent with our original real equation (21.3) and real solution w(t). However, we note that
λ2 = λ∗1 and ψ2 = (ψ1)∗ and thus z2 = z∗1 . It thus follows from (21.7) that, since χ2 = (χ1)∗ as
well,

w = z1χ
1 + z∗1(χ1)∗ ,

and thus
w = 2 Real(z1χ

1) .

Upon superposition, our solution is indeed real, as desired.
It is possible to use this modal decomposition to construct numerical procedures. However, our

interest here in the modal decomposition is as a way to understand how to choose an ODE scheme
for a system of two (later n) ODEs, and, for the chosen scheme, how to choose ∆t for stability.

21.3.2 Numerical Approximation of a System of Two ODEs

Crank-Nicolson

The application of the Crank-Nicolson scheme to our system (21.3) is identical to the application of
the Crank-Nicolson scheme to a scalar ODE. In particular, we directly take the scheme of example
21.1.8 and replace ũj ∈ R with w̃j ∈ R2 and g with Aw̃j + F j to obtain

w̃j = w̃j−1 +
∆t

2
(Aw̃j +Aw̃j−1) +

∆t

2
(F j + F j−1) . (21.14)

(Note if our force f is constant in time then F j = F .) In general if follows from consistency
arguments that we will obtain the same order of convergence as for the scalar problem — if (21.14)
is stable. The difficult issue for systems is stability : Will a particular scheme have good stability
properties for a particular equation (e.g., our particular A of (21.2))? And for what ∆t will the
scheme be stable? (The latter is particularly important for explicit schemes.)

To address these questions we again apply modal analysis but now to our discrete equations
(21.14). In particular, we write

w̃j = z̃j1χ
1 + z̃j2χ

2 , (21.15)
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where χ1 and χ2 are the eigenvectors of A as derived in the previous section. We now insert (21.15)
into (21.14) and multiply by (ψ1)H and (ψ2)H — just as in the previous section — to obtain

z̃j1 = z̃j−1
1 +

λ1∆t

2
(z̃j1 + z̃j−1

1 ) + (ψ1)H ∆t

2
(F j + F j−1) , (21.16)

z̃j2 = z̃j−1
2 +

λ2∆t

2
(z̃j2 + z̃j−1

2 ) + (ψ2)H ∆t

2
(F j + F j−1) , (21.17)

with corresponding initial conditions (which are not relevant to our current discussion).
We now recall that for the model problem

du

dt
= λu+ f , (21.18)

analogous to (21.10), we arrive at the Crank-Nicolson scheme

ũj = ũj−1 +
λ∆t

2
(ũj + ũj−1) +

∆t

2
(f j + f j−1) , (21.19)

analogous to (21.16). Working backwards, for (21.19) and hence (21.16) to be a stable approx-
imation to (21.18) and hence (21.10), we must require λ∆t, and hence λ1∆t, to reside in the
Crank-Nicolson absolute stability region depicted in Figure 21.12(a). Put more bluntly, we know
that the difference equation (21.16) will blow up — and hence also (21.14) by virture of (21.15)
— if λ1∆t is not in the unshaded region of Figure 21.12(a). By similar arguments, λ2∆t must also
lie in the unshaded region of Figure 21.12(a). In this case, we know that both λ1 and λ2 — for
our particular equation, that is, for our particular matrix A (which determines the eigenvalues λ1,
λ2) — are in the left-hand plane, and hence in the Crank-Nicolson absolute stability region; thus
Crank-Nicolson is unconditionally stable — stable for all ∆t — for our particular equation and will
converge as O(∆t2) as ∆t→ 0.

We emphasize that the numerical procedure is given by (21.14) , and not by (21.16), (21.17).
The modal decomposition is just for the purposes of understanding and analysis — to determine if a
scheme is stable and if so for what values of ∆t. (For a 2×2 matrix A the full modal decomposition is
simple. But for larger systems, as we will consider in the next section, the full modal decomposition
is very expensive. Hence we prefer to directly discretize the original equation, as in (21.14). This
direct approach is also more general, for example for treatment of nonlinear problems.) It follows
that ∆t in (21.16) and (21.17) are the same — both originate in the equation (21.14). We discuss
this further below in the context of stiff equations.

General Recipe

We now consider a general system of n = 2 ODEs given by

dw

dt
= Aw + F ,

w(0) = w0 ,

(21.20)

where w ∈ R2, A ∈ R2×2 (a 2× 2 matrix), F ∈ R2, and w0 ∈ R2. We next discretize (21.20) by any
of the schemes developed earlier for the scalar equation

du

dt
= g(u, t)
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simply by substituting w for u and Aw + F for g(u, t). We shall denote the scheme by S and the
associated absolute stability region by RS. Recall that RS is the subset of the complex plane which
contains all λ∆t for which the scheme S applied to g(u, t) = λu is absolutely stable.

For example, if we apply the Euler Forward scheme S we obtain

w̃j = w̃j−1 + ∆t(Aw̃j−1 + F j−1) , (21.21)

whereas Euler Backward as S yields

w̃j = w̃j−1 + ∆t(Aw̃j + F j) , (21.22)

and Crank-Nicolson as S gives

w̃j = w̃j−1 +
∆t

2
(Aw̃j +Aw̃j−1) +

∆t

2
(F j + F j−1) . (21.23)

A multistep scheme such as AB2 as S gives

w̃j = w̃j−1 + ∆t

(
3

2
Aw̃j−1 − 1

2
Aw̃j−2

)
+ ∆t

(
3

2
F j−1 − 1

2
F j−2

)
. (21.24)

The stability diagrams for these four schemes, RS, are given by Figure 21.9, Figure 21.7, Fig-
ure 21.12(a), and Figure 21.11(b), respectively.

We next assume that we can calculate the two eigenvalues of A, λ1, and λ2. A particular ∆t
will lead to a stable scheme if and only if the two points λ1∆t and λ2∆t both lie inside RS. If either
or both of the two points λ1∆t or λ2∆t lie outside RS, then we must decrease ∆t until both λ1∆t
and λ2∆t lie inside RS. The critical time step, ∆tcr, is defined to be the largest ∆t for which the
two rays [0, λ1∆t], [0, λ2∆t], both lie within RS; ∆tcr will depend on the shape and size of RS and
the “orientation” of the two rays [0, λ1∆t], [0, λ2∆t].

We can derive ∆tcr in a slightly different fashion. We first define ∆̂t1 to be the largest ∆t such
that the ray [0, λ1∆t] is in RS; we next define ∆̂t2 to be the largest ∆t such that the ray [0, λ2∆t]

is in RS. We can then deduce that ∆tcr = min(∆̂t1, ∆̂t2). In particular, we note that if ∆t > ∆tcr

then one of the two modes — and hence the entire solution — will explode. We can also see here
again the difficulty with stiff equations in which λ1 and λ2 are very different: ∆̂t1 may be (say)

much larger than ∆̂t2, but ∆̂t2 will dictate ∆t and thus force us to take many time steps — many
more than required to resolve the slower mode (smaller |λ1| associated with slower decay or slower
oscillation) which is often the behavior of interest.

In the above we assumed, as is almost always the case, that the λ are in the left-hand plane.
For any λ which are in the right-hand plane, our condition is flipped: we now must make sure that
the λ∆t are not in the absolute stability region in order to obtain the desired growing (unstable)
solutions.

Let us close this section with two examples.

Example 21.3.1 Undamped spring-mass system
In this example, we revisit the undamped spring-mass system considered in the previous section.
The two eigenvalues of A are λ1 = iωn and λ2 = iωn; without loss of generality, we set ωn = 1.0.
We will consider application of several different numerical integration schemes to the problem; for
each integrator, we assess its applicability based on theory (by appealing to the absolute stability
diagram) and verify our assessment through numerical experiments.

(i) Euler Forward is a poor choice since both λ1∆t and λ2∆t are outside RS=EF for all ∆t. The
result of numerical experiment, shown in Figure 21.20(a), confirms that the amplitude of the
oscillation grows for both ∆t = 0.5 and ∆t = 0.025; the smaller time step results in a smaller
(artificial) amplification.
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(a) Euler Forward
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(b) Euler Backward
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(c) Crank-Nicolson
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(d) Four-stage Runge-Kutta

Figure 21.20: Comparison of numerical integration schemes for an undamped spring-mass system
with ωn = 1.0.
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(ii) Euler Backward is also a poor choice since λ1∆t and λ2∆t are in the interior of RS=EB for all
∆t and hence the discrete solution will decay even though the exact solution is a non-decaying
oscillation. Figure 21.20(b) confirms the assessment.

(iii) Crank-Nicolson is a very good choice since λ1∆t ∈ RS=CN, λ2∆t ∈ RS=CN for all ∆t, and
furthermore λ1∆t, λ2∆t lie on the boundary of RS=CN and hence the discrete solution, just
as the exact solution, will not decay. Figure 21.20(c) confirms that Crank-Nicolson preserves
the amplitude of the response regardless of the choice of ∆t; however, the ∆t = 0.5 case
results in a noticeable phase error.

(iv) Four-stage Runge-Kutta (RK4) is a reasonably good choice since λ1∆t and λ2∆t lie close
to the boundary of RS=RK4 for |λi∆t| . 1. Figure 21.20(d) shows that, for the problem
considered, RK4 excels at not only preserving the amplitude of the oscillation but also at
attaining the correct phase.

Note in the above analysis the absolute stability diagram serves not only to determine stability but
also the nature of the discrete solution as regards growth, or decay, or even neutral stability — no
growth or decay. (The latter does not imply that the discrete solution is exact, since in addition to
amplitude errors there are also phase errors. Our Crank-Nicolson result, shown in Figure 21.20(c),
in particular demonstrate the presence of phase errors in the absence of amplitude errors.)

·

Example 21.3.2 Overdamped spring-mass-damper system: a stiff system of ODEs
In our second example, we consider a (very) overdamped spring-mass-damper system with ωn = 1.0
and ζ = 100. The eigenvalues associated with the system are

λ1 = −ζωn + ωn
√
ζ2 − 1 = −0.01

λ2 = −ζωn − ωn
√
ζ2 − 1 = −99.99 .

As before, we perturb the system by a unit initial displacement. The slow mode with λ1 = −0.01
dictates the response of the system. However, for conditionally stable schemes, the stability is
governed by the fast mode with λ2 = −99.99. We again consider four different time integrators:
two explicit and two implicit.

(i) Euler Forward is stable for ∆t . 0.02 (i.e. ∆tcr = 2/|λ2|). Figure 21.21(a) shows that
the scheme accurately tracks the (rather benign) exact solution for ∆t = 0.02, but becomes
unstable and diverges exponentially for ∆t = 0.0201. Thus, the maximum time step is limited
not by the ability to approximate the system response (dictated by λ1) but rather by stability
(dictated by λ2). In other words, even though the system response is benign, we cannot use
large time steps to save on computational cost.

(ii) Similar to the Euler Forward case, the four-stage Runge-Kutta (RK4) scheme exhibits an
exponentially diverging behavior for ∆t > ∆tcr ≈ 0.028, as shown in Figure 21.21(b). The
maximum time step is again limited by stability.

(iii) Euler Backward is unconditionally stable, and thus the choice of the time step is dictated
by the ability to approximate the system response, which is dictated by λ1. Figure 21.21(c)
shows that Euler Backward in fact produces a good approximation even for a time step as
large as ∆t = 5.0 since the system response is rather slow.
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(iv) Crank-Nicolson is also unconditionally stable. For the same set of time steps, Crank-Nicolson
produces a more accurate approximation than Euler Backward, as shown in Figure 21.21(d),
due to its higher-order accuracy.

In the above comparison, the unconditionally stable schemes required many fewer time steps
(and hence much less computational effort) than conditionally stable schemes. For instance, Crank-
Nicolson with ∆t = 5.0 requires approximately 200 times fewer time steps than the RK4 scheme
(with a stable choice of the time step). More importantly, as the shortest time scale (i.e. the largest
eigenvalue) dictates stability, conditionally stable schemes do not allow the user to use large time
steps even if the fast modes are of no interest to the user . As mentioned previously, stiff systems are
ubiquitous in engineering, and engineers are often not interested in the smallest time scale present
in the system. (Recall the example of the time scale associated with the dynamics of a passenger
jet and that associated with turbulent eddies; engineers are often only interested in characterizing
the dynamics of the aircraft, not the eddies.) In these situations, unconditionally stable schemes
allow users to choose an appropriate time step independent of stability limitations.

·
In closing, it is clear even from these simple examples that a general purpose explicit scheme

would ideally include some part of both the negative real axis and the imaginary axis. Schemes
that exhibit this behavior include AB3 and RK4. Of these two schemes, RK4 is often preferred
due to a large stability region; also RK4, a multi-stage method, does not suffer from the start-up
issues that sometimes complicate multi-step techniques.

21.4 IVPs: System of n Linear ODEs

We consider here for simplicity a particular family of problems: n/2 coupled oscillators. This family
of systems can be described by the set of equations.

d2u(1)

dt2
= h(1)

(
du(j)

dt
, u(j), 1 ≤ j ≤ n/2

)
+ f (1)(t) ,

d2u(2)

dt2
= h(2)

(
du(j)

dt
, u(j), 1 ≤ j ≤ n/2

)
+ f (2)(t) ,

...

d2u(n/2)

dt2
= h(n/2)

(
du(j)

dt
, u(j), 1 ≤ j ≤ n/2

)
+ f (n/2)(t) ,

where h(k) is assumed to be a linear function of all its arguments.
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(a) Euler Forward
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(b) Four-stage Runge-Kutta
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(c) Euler Backward
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(d) Crank-Nicolson

Figure 21.21: Comparison of numerical integration schemes for an overdamped spring-mass-damper
system with ωn = 1.0 and ζ = 50. Note that the time step used for the explicit schemes are different
from those for the implicit schemes.
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We first convert this system of equations to state space form. We identify

w1 = u(1), w2 =
du(1)

dt
,

w3 = u(2), w4 =
du(2)

dt
,

...

wn−1 = u(n/2), wn =
du(n/2)

dt
.

We can then write our system — using the fact that h is linear in its arguments — as

dw

dt
= Aw + F

w(0) = w0

(21.25)

where h determines A, F is given by
(

0 f (1)(t) 0 f (2)(t) . . . 0 f (n/2)(t)
)T

, and

w0 =

(
u(1)(0)

du(1)

dt
(0) u(2)(0)

du(2)

dt
(0) . . . u(n/2)(0)

du(n/2)

dt
(0)

)T

.

We have now reduced our problem to an abstract form identical to (21.20) and hence we may apply
any scheme S to (21.25) in the same fashion as to (21.20).

For example, Euler Forward, Euler Backward, Crank-Nicolson, and AB2 applied to (21.25)
will take the same form (21.21), (21.22), (21.23), (21.24), respectively, except that now w ∈ Rn,
A ∈ Rn×n, F ∈ Rn, w0 ∈ Rn are given in (21.25), where n/2, the number of oscillators (or masses)
in our system, is no longer restricted to n/2 = 1 (i.e., n = 2). We can similarly apply AB3 or BD2
or RK4.

Our stability criterion is also readily extended. We first note that A will now have in general
n eigenvalues, λ1, λ2, . . . , λn. (In certain cases multiple eigenvalues can create difficulties; we do
not consider these typically rather rare cases here.) Our stability condition is then simply stated:
a time step ∆t will lead to stable behavior if and only if λi∆t is in RS for all i, 1 ≤ i ≤ n. If
this condition is not satisfied then there will be one (or more) modes which will explode, taking
with it (or them) the entire solution. (For certain very special initial conditions — in which the w0

is chosen such that all of the dangerous modes are initially exactly zero — this blow-up could be
avoided in infinite precision; but in finite precision we would still be doomed.) For explicit schemes,
∆tcr is the largest time step such that all the rays [0, λi∆t], 1 ≤ i ≤ n, lie within RS.

There are certainly computational difficulties that arise for large n that are not an issue for
n = 2 (or small n). First, for implicit schemes, the necessary division — solution rather than
evaluation of matrix-vector equations — will become considerably more expensive. Second, for
explicit schemes, determination of ∆tcr, or a bound ∆tconservative

cr such that ∆tconservative
cr ≈ ∆tcr

and ∆tconservative
cr ≤ ∆tcr, can be difficult. As already mentioned, the full modal decomposition can

be expensive. Fortunately, in order to determine ∆tcr, we often only need as estimate for say the
most negative real eigenvalue, or the largest (in magnitude) imaginary eigenvalue; these extreme
eigenvalues can often be estimated relatively efficiently.
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Finally, we note that in practice often adaptive schemes are used in which stability and accuracy
are monitored and ∆t modified appropriately. These methods can also address nonlinear problems
— in which h no longer depends linearly on its arguments.
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Chapter 22

Boundary Value Problems
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Chapter 23

Partial Differential Equations
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