Random Variables

Probability Density Function (pdf)

Introduce sample space

interval [a,b]: a < x < b. a < x < b

Define pdf
$$f_{x}(x)$$

$$f_{x}(x) = 0 \text{ for all } x, a \le x \le b;$$

$$\int_{a}^{b} f_{x}(x) dx = 1.$$

AT Patera

2.086 Prob_Stats

February 26, 2013

AT Patera

2.086 Prob Stats

February 26, 2013

Then

$$P(x \in X \in x + dx) = f_X(x) dx$$

and

$$P(a' < X < b') = \int_{a'}^{b'} f_{X}(x) dx$$

for a & a' & b' & b.

Note

$$P(a < X \leq b) = \int_{a}^{b} f_{X}(x) dx = 1.$$

Cumulative Distribution Function (cdf)

Define
$$x$$

 $F_X(x) = \int_a^x f_X(x') dx' = P(X \le x)$

Then

AT Patera

$$F_{X}(a) = 0$$
, $F_{X}(b) = 1$;
 $F_{X}(x)$ non-decreasing with x ;
 $P(a' \le x \le b') = F_{X}(b') - F_{X}(a')$.

2.086 Prob Stats

February 26, 2013

2.086 Prob Stats

Expectation

$$\mathbb{E}(g(X)) = \int_{a}^{b} f_{X}(x) g(x) dx$$

Hence

$$\mu (= \mu_X) = \mathbb{E}(X) = \int_{\alpha}^{b} f_X(x) \cdot x \, dx, \qquad \text{mean };$$

$$\sigma^2 (= \sigma_X^2) = \mathbb{E}((X - \mu)^2) = \int_{\alpha}^{b} f_X(x) (x - \mu)^2 dx \qquad \text{variance};$$

$$\sigma (= \sigma_X) = \sqrt{\sigma^2} \qquad \text{standard}$$
deviation.

Note
$$X \sim f_X(\cdot)$$
, μ_X , σ_X^2 , σ_X

$$\mathbb{E}\left(\frac{X-\mu_X}{\sigma_X}\right) = \int_{\alpha}^{b} f_X(x) \cdot \left(\frac{x-\mu_X}{\sigma_X}\right) dx$$

$$= \int_{\alpha}^{b} f_X(x) \cdot \left(\frac{x-\mu_X}{\sigma_X}\right) dx$$

$$= \int_{\alpha}^{b} f_X(x) \cdot x dx - \int_{\alpha}^{b} \int_{\alpha}^{c} f_X(x) \cdot \mu_X dx$$

$$= 0, \qquad \mu_Y = 0$$

$$\mathbb{E}\left(\left(\frac{X-\mu_X}{\sigma_X} - 0\right)^2\right) = \int_{\alpha}^{b} \int_{\alpha}^{c} f_X(x) \cdot \left(x-\mu_X\right)^2 dx$$

$$= 1 \qquad \sigma_Y^2 = \sigma_Y^2 = 1$$

AT Patera

2.086 Prob_Stats

February 26, 2013

5

AT Patera

2.086 Prob_Stats

February 26, 2013

Quantiles:

The α quantile of X, $\tilde{\chi}_{\alpha}$, satisfies

$$F_X(\tilde{x}_\alpha) = \alpha$$

$$= \alpha \qquad (continuous)$$

such that

$$P(X \leq \tilde{x}_{\alpha}) = \alpha$$
, $P(X \geq \tilde{x}_{\alpha}) = 1 - \alpha$.

Note $\tilde{\chi}_{\alpha=\frac{1}{2}}$ is the median of X.

Example: uniform distribution over [a,b] $\int_{X} (x) = \frac{1}{b-a}, \quad a \in X \in b \quad (>0)$ $\frac{1}{b-a} = \int_{a}^{b} f_{X}(x) dx = \frac{b-a}{b-a} = 1 = \int_{x}^{b} f_{X}(b) - f_{X}(a)$ $P(a' \in X \in b') = \frac{b'-a'}{b-a}$

2

2.086 Prob_Stats

February 26, 2013

AT Patera

2.086 Prob_Stats

Note

$$\mu_{X} = \frac{a+b}{2}$$

$$\sigma_{X}^{2} = \frac{1}{12} (b^{2} - a^{2}) , \quad \overline{\sigma}_{X} = \sqrt{\sigma_{X}^{2}}$$

and

$$\tilde{\chi}_{\alpha=\frac{1}{2}} = \frac{\alpha+b}{2}$$
 (median).

(later: bivarate case)

the Normal Distribution (Gaussian)

AT Patera

2.086 Prob_Stats

February 26, 2013

AT Patera

2.086 Prob_Stats

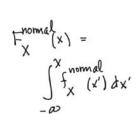
February 26, 2013

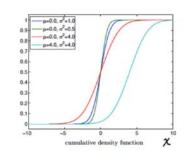
10

X ~ f, (x; μ, σ²) or X ~ N (μ, σ²)

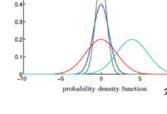
 μ =0.0, σ^2 =0.5 μ =0.0, σ^2 =4.0 μ =4.0, σ^2 =4.0

cdf:





 $f_{\nu}^{normal}(x;\mu_1\sigma^2) =$ $\frac{1}{\sqrt{\pi}} \exp\left(-\frac{(x-\mu)^2}{2\pi^2}\right)$



$$\mu_X = \mu_i$$
; $\sigma_X^2 = \sigma^2$; $\sigma_X = \sigma$ (also median, mode)

quantiles: $\tilde{\chi}_{0.841} = \mu + \sigma$, $\tilde{\chi}_{0.971} = \mu + 2\sigma$, $\tilde{\pi}_{0.9185} = \mu + 3\sigma$; x = + 1960 > P(|X-4| ≤ 1.960) = .05.

3

2.086 Prob Stats

February 26, 2013

11

AT Patera

2.086 Prob Stats

Standard normal variable
$$N(0,1)$$

If

 $Z \sim f_Z^{\text{normal}}(z,0,1)$

then Z is a standard normal random variable.

Further notation:

$$F_{Z}(z) = F_{Z}^{\text{normal}}(z, \mu=0, \sigma^2=1) = \overline{\Phi}(z)$$
;

$$\tilde{z}_{\alpha}: \Phi(\tilde{z}_{\alpha}=\alpha)$$
 $\tilde{z}_{0.975} = 1.96$

some Useful Transformations Random Variate Generation

AT Patera

2.086 Prob_Stats

February 26, 2013

13

AT Patera

2.086 Prob_Stats

February 26, 2013

Between uniforms

Let U be ~ uniform over [0,1],

Let
$$X = a + (b-a)U$$
. $X = g(U)$

Then X is ~ uniform over [a,b],

$$f_X(x) = \frac{1}{b-a}$$
, $a \le x \le b$.

(bseudo-) random variates:

$$u = rand(1,n)$$

$$u = rand(1, n);$$

 $X = a + (b-a) * u;$

Between normals

Let Z be a standard normal r.v.,

$$Z \sim \mathcal{N}(0,1)$$
 $\mu:0, \sigma^2=\sigma=1$

$$\mu = 0$$
, $\sigma^2 = \sigma = 1$

Let
$$X = \sigma Z + \mu$$
. $X = g(Z)$

Then X is a normal r.v.,

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 scale then shift

(Backwards: $Z = \frac{X - \mu}{T}$: mean zero, variance unity.)

(pseudo-) random variates:

$$Z = randn(1,n);$$

 $X = mu + Sigma * Z;$

MATURB Summary

randi

rand uniform continuous [0,1] uniform discrete integer, contiquous

randon

standard normal mean = 0

std dev = 1

AT Patera

2.086 Prob_Stats

February 26, 2013

17

AT Patera

2.086 Prob_Stats

MIT OpenCourseWare http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.