Robability (2 Statistics) Basic Concepts (Frequentist View)

A "Calculus" for Frequency

Populationsample of size nExperiment : $\omega \rightarrow \{(N, w); (N, R); (T, w); (T, R)\}$ Sample space of all possible outcomes	
MIT Medie students Experiment(s) Each experiment yields one, and only one, outcome:	
Experiment: Two "Variables" 1) Heat Transfer Background: Coursework N(ot taken yet) or T(aken) 2.005 2) Heat Transfer Knowledge: "Wall Question W(rong) or R(ight) answer	0 ₂ 0 ₃

1

3

"Number" function: for an event $\mathcal{E}(N,T,W,R)$, #(\mathcal{E}) = number of members of sample for which outcome satisfies \mathcal{E} . ex: if $\mathcal{E} \equiv N$ (ot taken),

#(E) = number of members of sample for which outcome is (N,W) OR (N,R)

"Trequency" function:

$$q_n(\varepsilon) = \#(\varepsilon)/n$$
 (fraction of occurrences).
sample size

AT Patera

2.086 Prob_Stats

February 14, 2013

5

"Marginal" Frequencies: (Heat Transfer) Background

Interpret Background as a "variable" which can take on two values: N or T.

Note: an experiment can not yield N AND T: events N and T are mutually exclusive; an experiment must yield either N OR T: events N and T are collectively exhaustive.

"Joint" frequencies: $\{(N,W), (N,R), (T,W), (T,R)\}$ $\eta_n((N,W)), \eta_n((N,R)), \eta_n((T,W)), \eta_n((T,R))$ fraction of outcomes which are (N,W)Note: $\eta_n((N,W)) + \eta_n((N,R)) + \eta_n((T,W)) + \eta_n((T,R))$ = (#((N,W)) + #((N,R)) + #((T,W)) + #((T,R)))/n = 1since each experiment yields one and only one outcome and hence is counted in one and only one of #((N,W)), #((N,R)), #((T,W)), #((T,R)).

AT Patera

2.086 Prob_Stats

February 14, 2013 6

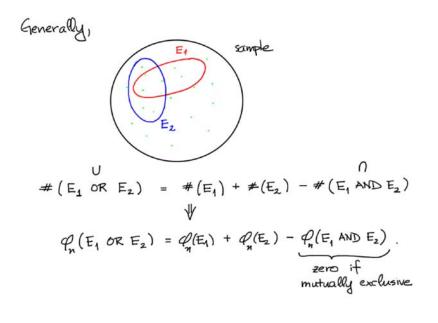
Hence

$$(N AND T) = 0$$

 $\Rightarrow \varphi((N AND T) = 0$ mutually
 $\Rightarrow \varphi((N AND T) = 0$ exclusive

and
#(NORT) = n
$$\Rightarrow \varphi(NORT) = 1$$
 collectively
exhaustive

2



Here,

$$E = N = (N,W) \text{ OR } (N,R),$$
So

$$Q_{n}(N) = Q_{n}((N,W)) + Q_{n}((N,R))$$

$$- Q_{n}((N,W) \text{ AND } (N,R))$$

$$\text{zero: outcomes of sample space are mutually exclusive and collectively exhaustive}$$

$$= Q_{n}((N,W)) + Q_{n}((N,R));$$

$$Q_{n}(T) = Q_{n}((T,W)) + Q_{n}((T,R)) \text{ by similar arguments.}$$
Node $Q_{n}(N) + Q_{n}(T) = \sum_{i=1}^{4} Q_{n}(O_{i}) = 1.$
Sum over outcomes of sample space

AT Patera

2.086 Prob_Stats

February 14, 2013

9

AT Patera

2.086 Prob_Stats

February 14, 2013 10

"Marginal" Frequencies: (Heat Transfer) Knowledge
Interpret Knowledge as a "variable"
which can take on two values: W or R.
mutually exclusive
we obtain

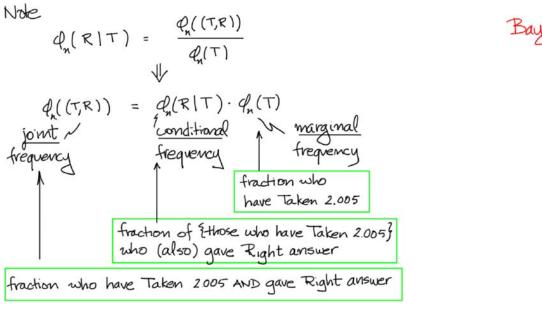
$$f_n(W) = f_n((N,W)) + f_n((T,W))$$

and

$$q'_n(R) = q'_n((N,R)) + q'_n((T,R))$$

Note $q_n(W) + q_n(R) = 1$.

3



$$E_{1}, E_{2}$$

$$Q((T,R)) = Q(R|T) \cdot Q(T)$$

$$Q((T,R)) = Q(T|R) \cdot Q(R)$$

$$V$$

$$Q(T|R) = \frac{Q(R|T) \cdot Q(T)}{Q(R)}$$

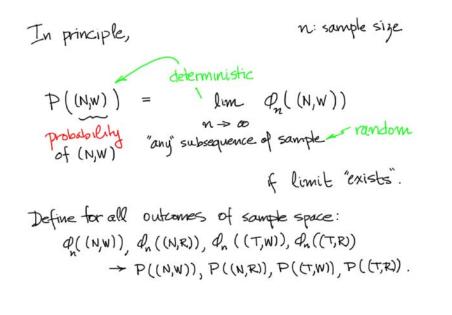
$$Correlation is causality$$

AT Patera 2.086 Prob_Stats February 14, 2013 13 AT Patera 2.086 Prob_Stats February 14, 2013 14

Independence:

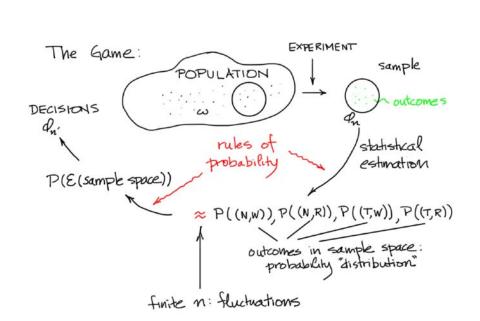
events (say) T and R are
independent IF

$$\begin{array}{c}
 \mathcal{P}_n(R \ AND \ T) = \mathcal{P}_n(R) \cdot \mathcal{P}_n(T) \\
 \mathcal{P}((T,R)) \\
 <=> \mathcal{P}_n(R \ T) = \mathcal{P}_n(R) \\
 sample \\
 R \\
 R \ AND \ T \\
 \qquad T
 \end{array}$$



Definitions and rules of probability:
$$P_n \rightarrow P$$

joint: $P((N,W)), ...;$
 \mathcal{E}_1 and \mathcal{E}_2 : mutually exclusive, collectively exhaustive,
 $P(\mathcal{E}_1 \text{ or } \mathcal{E}_2) = P(\mathcal{E}_1) + P(\mathcal{E}_2) - P(\mathcal{E}_1 \text{ AND } \mathcal{E}_2);$
marginal: $P(N), P(T), ...;$
conditional: $P(R|T), P(T|R), P(R|N), ...$
 $P((T,R)) = P(R|T) \cdot P(T), ...$
Payes Theorem
Independence: $P(R \text{ AND } T) = P(T) \cdot P(R)$
 $\iff P(R|T) = P(R)$



2.086 Prob_Stats

2.086 Prob_Stats

AT Patera

5

19

February 14, 2013

17

AT Patera

February 14, 2013

2.086 Numerical Computation for Mechanical Engineers Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.