St. Venant Torsion Multi-cell

applied torque
this is a combination of nomenclature from Hughes section 6.1 Multiple Cell Sections and Mixed Sections page 227 ff and Kollbrunner cross section (partial) sectin 2.3 Multicelluar Box Section Members

first recall ...

$$
\text { torque in a cell }=\quad M_{x_{i}}=2 \cdot A_{i} \cdot q_{i}
$$

shear flow constant, integral of shear stress*h*dA = torque etc...
=> total torque

$$
M_{x}=T=\sum_{i} M_{x_{i}}=\sum_{i} 2 \cdot A_{i} \cdot q_{i}
$$

angle of twist (same for all cells)

$$
\phi^{\prime}=\frac{\mathrm{T}}{\mathrm{G} \cdot \mathrm{~J}}
$$

i.e. ... the derivative of the twist angle wrt the axial coordinate is = applied torque/torsional stiffness
and from our development of pure twist (closed section)

$$
\mathrm{u}=\int_{0}^{\mathrm{s}} \frac{\tau}{\mathrm{G}} \mathrm{ds}-\frac{\delta \phi}{\delta \mathrm{x}} \cdot \int \mathrm{~h}_{\mathrm{D}} \mathrm{ds}+\mathrm{u}_{0}(\mathrm{x})
$$

if this quantity is integrated entirely around a closed section ...

$$
\int_{0}^{\mathrm{s}} \frac{\tau}{\mathrm{G}} \mathrm{ds}-\frac{\delta \phi}{\delta \mathrm{x}} \cdot \int \mathrm{~h}_{\mathrm{D}} \mathrm{ds}=0 \quad \text { the axial displacement returns to the starting point }
$$

rearranging and substituting $q=\tau^{\star} t \ldots$

$$
\begin{gathered}
\int_{0}^{\mathrm{s}} \frac{\mathrm{q}}{\mathrm{t}} \mathrm{ds}=\frac{\delta \phi}{\delta \mathrm{x}} \cdot \mathrm{G} \cdot \int \mathrm{~h}_{\mathrm{D}} \mathrm{ds} \quad \text { and since } \int \mathrm{h}_{\mathrm{D}}^{\mathrm{ds}=2 \cdot \mathrm{~A}} \quad \int_{0}^{\mathrm{s}} \frac{\mathrm{q}}{\mathrm{t}} \mathrm{ds}=\frac{\delta \phi}{\delta \mathrm{x}} \cdot \mathrm{G} \cdot 2 \cdot \mathrm{~A}=\frac{\mathrm{T}}{\mathrm{G} \cdot \mathrm{~J}} \cdot \mathrm{G} \cdot 2 \cdot \mathrm{~A}=\frac{2 \mathrm{~T}}{\mathrm{~J}} \cdot \mathrm{~A} \\
\frac{1}{2} \cdot \operatorname{base}(\mathrm{ds}) \cdot \operatorname{altitude}(\mathrm{h})=\mathrm{dA}
\end{gathered}
$$

now we have enough pieces to assemble the puzzle ...
for each cell

$$
\left(\int_{0}^{s} \frac{\mathrm{q}}{\mathrm{t}} \mathrm{ds}=\frac{2 \mathrm{~T}}{\mathrm{~J}} \cdot \mathrm{~A}_{\mathrm{i}}\right.
$$

the shear flow q in cell i is composed of qi (reference direction) and segments of qi-1 and qi=1 in opposite direction ON COMMON BOUNDARY.
i.e.

$$
\left(\int_{0}^{\mathrm{s}} \frac{\mathrm{q}}{\mathrm{t}} \mathrm{ds}=\int_{\mathrm{i}}^{\mathrm{b}} \frac{\mathrm{q}_{\mathrm{i}}}{\mathrm{t}} \mathrm{ds}-\int_{\mathrm{s} 0\left(\mathrm{i}_{-}\right. \text {and_i-1) }}^{\mathrm{s} 1\left(\mathrm{i}_{-}\right. \text {and_i-1) }} \frac{\mathrm{q}_{\mathrm{i}-1}}{\mathrm{t}} \mathrm{ds}-\int_{\mathrm{s} 0\left(\mathrm{i}_{-} \text {and_i}+1\right)}^{\mathrm{s} 1\left(\mathrm{i}_{-}\right. \text {and_i+1) }} \frac{\mathrm{q}_{\mathrm{i}+1}}{\mathrm{t}} \mathrm{ds}\right.
$$

the individual shear flows are constant "normalize" the shear flow by 2*T/J Hughes retains G but the approach is the same

$$
\mathrm{q} \text { bar }=\frac{\mathrm{q}}{\left(\frac{2 \cdot \mathrm{~T}}{\mathrm{~J}}\right)}
$$

this is a set of equations, one for each cell corresponding to qi, like shear but with different rhs.

$$
\begin{aligned}
& 1 \text { 1,2 } \\
& \text { q_bar }_{1} \cdot \int \frac{1}{\mathrm{t}} \mathrm{ds}-\mathrm{q} \mathrm{\& bar}_{2} \cdot \int \frac{1}{\mathrm{t}} \mathrm{ds} \quad=\mathrm{A}_{1} \\
& 1 \text { 1,2 } \\
& -q _ \text {bar }_{1} \cdot \int \frac{1}{\mathrm{t}} \mathrm{ds}+\mathrm{q}_{\mathrm{bar}}^{2} \cdot \int \frac{1}{\mathrm{t}} \mathrm{ds}-\mathrm{q}_{\mathrm{bar}}^{3} \cdot \mathrm{\int} \frac{1}{\mathrm{t}} \mathrm{ds} \quad=\mathrm{A}_{2} \\
& \begin{array}{lll}
1,2 & 2,3
\end{array} \\
& -q \text { bar }_{2} \cdot \int \frac{1}{\mathrm{t}} \mathrm{ds}+\mathrm{q} \mathrm{_}_{\mathrm{bar}}^{3} \cdot \int \frac{1}{\mathrm{t}} \mathrm{ds}-\mathrm{q}_{\mathrm{bar}}^{4} \cdot \mathrm{\int} \frac{1}{\mathrm{t}} \mathrm{ds} \quad=\mathrm{A}_{3} \\
& \begin{array}{lll}
2,3 & 3 & 3,4
\end{array} \\
& \text { q_bar }_{n-1} \cdot \int \frac{1}{\mathrm{t}} \mathrm{ds}-\mathrm{q}_{\mathrm{bar}}^{\mathrm{n}} \cdot \boldsymbol{\int} \frac{1}{\mathrm{t}} \mathrm{ds} \quad=\mathrm{A}_{\mathrm{n}} \\
& \mathrm{n}-1, \mathrm{n} \quad \mathrm{n}
\end{aligned}
$$

as we did for shear due to bending; let each element of the matrix $\int \frac{1}{t}$ ds be expressed by η where $\eta_{\mathrm{ik}}=\int \frac{1}{\mathrm{t}} \mathrm{ds}$ integral along wall separating i and k and $\eta_{\mathrm{ii}}=\int_{\mathrm{t}}^{\mathrm{i}, \mathrm{k}} \frac{1}{\mathrm{ds}}$ integral around cell i etc
if wall thickness is piecewise constant walls =>

$$
\eta_{i k}=\frac{s_{i k}}{t_{i k}} \quad \text { and } \quad \eta_{i i}=\sum_{j=1}^{4} \frac{s_{i j}}{t_{i j}}=\frac{s_{i 1}}{t_{i 1}}+\frac{s_{i 2}}{t_{i 2}}+\frac{s_{i 3}}{t_{i 3}}+\frac{s_{i 4}}{t_{i 4}}
$$

where $s_{i j}, t_{i j}$ is the length and thickness of wall j of cell i
and thus we have for the three cell arranged as above ...

$$
\begin{aligned}
& \mathrm{T}=\sum_{\mathrm{i}} 2 \cdot \mathrm{~A}_{\mathrm{i}} \cdot \mathrm{q}_{\mathrm{i}}=\sum_{\mathrm{i}} 2 \cdot \mathrm{~A}_{\mathrm{i}} \cdot \mathrm{q}_{-} \mathrm{bar}_{\mathrm{i}} \cdot \frac{2 \cdot \mathrm{~T}}{\mathrm{~J}} \quad \Rightarrow \quad \mathrm{~J}=\sum_{\mathrm{i}} 4 \cdot \mathrm{~A}_{\mathrm{i}} \cdot \mathrm{q}^{2} \mathrm{bar}_{\mathrm{i}} \\
& q_{i}=T \cdot \frac{q_{-b a r_{i}}}{\left(\sum_{i} 2 \cdot A_{i} \cdot q _b a r_{i}\right)}
\end{aligned}
$$

