## General Method for Deriving an Element Stiffness Matrix

## step I: select suitable displacement function

beam likely to be polynomial with one unknown coefficient for each (of four) degrees of freedom

$$
\begin{aligned}
& v(x) \rightarrow C_{1}+x \cdot C_{2}+x^{2} \cdot C_{3}+x^{3} \cdot C_{4} \quad \frac{d}{d x} v(x) \rightarrow C_{2}+2 \cdot x \cdot C_{3}+3 \cdot x^{2} \cdot C_{4} \\
& \delta(\mathrm{x}):=\binom{\mathrm{v}(\mathrm{x}))}{\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}(\mathrm{x})} \quad \delta(\mathrm{x}) \rightarrow\binom{\left.\mathrm{C}_{1}+\mathrm{x} \cdot \mathrm{C}_{2}+\mathrm{x}^{2} \cdot \mathrm{C}_{3}+\mathrm{x}^{3} \cdot \mathrm{C}_{4}\right)}{\mathrm{C}_{2}+2 \cdot \mathrm{x} \cdot \mathrm{C}_{3}+3 \cdot \mathrm{x}^{2} \cdot \mathrm{C}_{4}} \quad \delta(0) \rightarrow\left(\begin{array}{l}
\mathrm{C}_{1} \\
\mathrm{C}_{2}
\end{array} \quad \quad \delta(\mathrm{~L}) \rightarrow\left(\begin{array}{c}
\mathrm{C}_{1}+\mathrm{L} \cdot \mathrm{C}_{2}+\mathrm{L}^{2} \cdot \mathrm{C}_{3}+\mathrm{L}^{3} \cdot \mathrm{C}_{4}
\end{array}\right)\right.
\end{aligned}
$$

in matrix form:

$$
\delta(\mathrm{x})=\left(\begin{array}{cccc}
1 & \mathrm{x} & \mathrm{x}^{2} & \mathrm{x}^{3} \\
0 & 1 & 2 \mathrm{x} & 3 \mathrm{x}^{2}
\end{array}\right)\left(\begin{array}{l}
\mathrm{C}_{1}
\end{array}\right) \quad \text { for manipulation }\binom{\mathrm{C}_{2}}{\mathrm{C}_{3}} \quad \delta_{-} \text {over_C }(\mathrm{x}):=\left(\begin{array}{ccc}
1 & \mathrm{x} & \mathrm{x}^{2} \\
\mathrm{x}^{3}
\end{array}\right)
$$

step II: relate general displacements within element to its nodal displacement
$\delta_{-}$over_C $(0) \rightarrow\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right) \quad \delta_{-}$over_C $(\mathrm{L}) \rightarrow\left(\begin{array}{cccc}1 & \mathrm{~L} & \mathrm{~L}^{2} & \mathrm{~L}^{3} \\ & & & \\ 0 & 1 & 2 \cdot \mathrm{~L} & 3 \cdot \mathrm{~L}^{2}\end{array}\right)$
in single matrix form:

$$
\left.\begin{array}{rl}
\delta_{-} \text {nodes } & =\left(\left.\begin{array}{c}
\mathrm{v}_{1} \\
\mathrm{v}_{1} \mathrm{p} \\
\mathrm{v}_{2}
\end{array} \right\rvert\, \quad \text { define } \mathrm{A}\right. \text { such that } \\
\left.\mathrm{v}_{2} \mathrm{p}\right) & \delta_{-} \text {nodes }=\mathrm{A} \cdot \mathrm{C} \\
\mathrm{~A} & :=\operatorname{stack}\left(\delta_{-} \text {over_C}(0), \delta_{-} \text {over_C }(\mathrm{L})\right) \quad \mathrm{A} \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & \mathrm{~L} & \mathrm{~L}^{2} & \mathrm{~L}^{3} \\
0 & 1 & 2 \cdot \mathrm{~L} & 3 \cdot \mathrm{~L}^{2}
\end{array}\right) \quad \mathrm{A}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & \mathrm{~L} & \mathrm{~L}^{2} & \mathrm{~L}^{3}
\end{array}\right) \\
0 & 1 \\
0 & \mathrm{~L} \\
3 \cdot \mathrm{~L}^{2}
\end{array}\right)
$$

form by stacking
node 1 with node 2
$\delta_{-}$nodes $=\mathrm{A} \cdot \mathrm{C} \quad \Rightarrow \quad \mathrm{C}:=\mathrm{A}^{-1} \cdot \delta_{-}$nodes $\quad \mathrm{A}^{-1} \rightarrow \frac{1}{\mathrm{~L}^{4}} \cdot\left(\left.\begin{array}{cccc}\mathrm{L}^{4} & 0 & 0 & 0 \\ 0 & \mathrm{~L}^{4} & 0 & 0 \\ -3 \cdot \mathrm{~L}^{2} & -2 \cdot \mathrm{~L}^{3} & 3 \cdot \mathrm{~L}^{2} & -\mathrm{L}^{3}\end{array} \right\rvert\, \begin{array}{c} \\ 2 \cdot \mathrm{~L} \\ \\ \mathrm{~L}^{2} \\ -2 \cdot \mathrm{~L}\end{array} \mathrm{~L}^{2}\right)$
$\mathrm{v}(\mathrm{x}):=\mathrm{H}(\mathrm{x}) \cdot \mathrm{C} \quad \mathrm{H}(\mathrm{x}) \rightarrow\left(\begin{array}{llll}1 & \mathrm{x} & \mathrm{x}^{2} & \mathrm{x}^{3}\end{array}\right) \quad \mathrm{v}(\mathrm{x}):=\mathrm{H}(\mathrm{x}) \cdot \mathrm{A}^{-1} \cdot \delta \_$nodes
$\frac{v(x)}{\delta_{-} \text {nodes }}$ simplify $\rightarrow\left(\frac{L^{3}-3 \cdot x^{2} \cdot L+2 \cdot x^{3}}{L^{3}} x \cdot \frac{L^{2}-2 \cdot x \cdot L+x^{2}}{L^{2}}-x^{2} \cdot \frac{-3 \cdot L+2 \cdot x}{L^{3}} x^{2} \cdot \frac{-L+x}{L^{2}}\right)$
shape function defined $\quad \mathrm{N}(\mathrm{x}):=\mathrm{H}(\mathrm{x}) \cdot \mathrm{A}^{-1}$ with $\quad \xi=\frac{\mathrm{x}}{\mathrm{L}} \quad \Rightarrow>\quad \mathrm{x}:=\xi \cdot \mathrm{L}$
$\mathrm{N}(\mathrm{x}) \rightarrow\left(1-3 \cdot \xi^{2}+2 \cdot \xi^{3} \xi \cdot \mathrm{~L}-2 \cdot \xi^{2} \cdot \mathrm{~L}+\xi^{3} \cdot \mathrm{~L} 3 \cdot \xi^{2}-2 \cdot \xi^{3}-\xi^{2} \cdot \mathrm{~L}+\xi^{3} \cdot \mathrm{~L}\right) \quad$ 5.3.9b although text has mix of $\xi$ and x

## Step III: express the internal deformation in terms of the nodal displacement

area resets $x$, redefines $C, H$ and $v$
$\square$
our problem is one of solid mechanics ; plane elasticity
deformation is strain: du/dx,
bending curvature $d^{2} u / d x^{2}$. $v \_2 p r=d^{2} u / d x^{2}$.
$v(x) \rightarrow C_{1}+x \cdot C_{2}+x^{2} \cdot C_{3}+x^{3} \cdot C_{4} \quad \frac{d^{2}}{d x^{2}} v(x) \rightarrow 2 \cdot C_{3}+6 \cdot x \cdot C_{4} \quad \quad v_{-} 2 \operatorname{pr}(x):=\left(\begin{array}{llll}0 & 0 & 2 & 6 \cdot x\end{array}\right) \cdot C$
$\mathrm{v}_{-} 2 \operatorname{pr}(\mathrm{x}):=\left(\begin{array}{llll}0 & 0 & 2 & 6 \cdot x\end{array}\right) \cdot \mathrm{A}^{-1} \cdot \delta_{-}$nodes $\quad \mathrm{B}(\mathrm{x}):=\left(\begin{array}{llll}0 & 0 & 2 & 6 \cdot x\end{array}\right) \cdot \mathrm{A}^{-1} \quad \mathrm{v}_{-} 2 \operatorname{pr}(\mathrm{x}):=\mathrm{B}(\mathrm{x}) \cdot \delta_{-}$nodes
$B(x) \rightarrow\left(\frac{-6}{L^{2}}+12 \cdot \frac{x}{L^{3}} \frac{-4}{L}+6 \cdot \frac{x}{L^{2}} \frac{6}{L^{2}}-12 \cdot \frac{x}{L^{3}} \frac{-2}{L}+6 \cdot \frac{x}{L^{2}}\right)$

## step IV: express the internal force in terms of the nodal displacement

the "internal force" is the bending moment and as with internal deformation,
this is a problem in bending so the relationship is

$$
\mathrm{M}(\mathrm{x})=\mathrm{E} \cdot \mathrm{I} \cdot \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \mathrm{v}(\mathrm{x})=\mathrm{E} \cdot \mathrm{I} \cdot \mathrm{v}_{-} 2 \operatorname{pr}(\mathrm{x})
$$

we just developed
copy here for use elsewhere:
$\mathrm{v} \_2 \operatorname{pr}(\mathrm{x}):=\mathrm{B}(\mathrm{x}) \cdot \delta \_$nodes

$$
B(x):=\left(\frac{-6}{L^{2}}+12 \cdot \frac{x}{L^{3}} \frac{-4}{L}+6 \cdot \frac{x}{L^{2}} \frac{6}{L^{2}}-12 \cdot \frac{x}{L^{3}} \frac{-2}{L}+6 \cdot \frac{x}{L^{2}}\right)
$$

$v_{-} 2 \operatorname{pr}(x) \rightarrow\left[\left(\frac{-6}{L^{2}}+12 \cdot \frac{x}{L^{3}}\right) \cdot \delta_{-}\right.$nodes $\left(\frac{-4}{L}+6 \cdot \frac{x}{L^{2}}\right) \cdot \delta_{-} \operatorname{nodes}\left(\frac{6}{L^{2}}-12 \cdot \frac{x}{L^{3}}\right) \cdot \delta_{-} \operatorname{nodes}\left(\frac{-2}{L}+6 \cdot \frac{x}{L^{2}}\right) \cdot \delta_{-}$nodes $]$
define:
$\mathrm{M}(\mathrm{x}):=\mathrm{E} \cdot \mathrm{I} \cdot \mathrm{v}_{-} 2 \operatorname{pr}(\mathrm{x}) \quad \mathrm{bb}:=\frac{\mathrm{E} \cdot \mathrm{I}}{\mathrm{L}^{3}} \frac{\mathrm{M}(\mathrm{x})}{\mathrm{bb} \cdot \delta_{-} \text {nodes }} \operatorname{simplify} \rightarrow[-6 \cdot \mathrm{~L}+12 \cdot \mathrm{x} \quad 2 \cdot(-2 \cdot \mathrm{~L}+3 \cdot \mathrm{x}) \cdot \mathrm{L} \quad 6 \cdot \mathrm{~L}-12 \cdot \mathrm{x} \quad 2 \cdot(-\mathrm{L}+3 \cdot \mathrm{x}) \cdot \mathrm{L}]$
since $M(x)$ is linear, we can calculate $M(x)$ at the nodes (N.B. M is the internal moment) define $S$

$$
\binom{\mathrm{M}(0)}{\mathrm{M}(\mathrm{~L})}=\mathrm{S} \cdot \delta \_ \text {nodes } \quad 5.3 .12 \mathrm{~b}
$$

S_over_bb $=\binom{\frac{\mathrm{M}(0)}{\mathrm{bb} \cdot \delta_{-} \text {nodes }}}{\frac{\mathrm{M}(\mathrm{L})}{\mathrm{bb} \cdot \delta_{-} \text {nodes }}}$

$$
\begin{aligned}
& \frac{\mathrm{M}(0)}{\mathrm{bb} \cdot \delta_{-} \text {nodes }} \rightarrow\left(\begin{array}{llll}
-6 \cdot \mathrm{~L} & -4 \cdot \mathrm{~L}^{2} & 6 \cdot \mathrm{~L} & -2 \cdot \mathrm{~L}^{2}
\end{array}\right) \\
& \frac{\mathrm{M}(\mathrm{~L})}{\mathrm{bb} \cdot \delta \_ \text {nodes }} \rightarrow\left(\begin{array}{llll}
6 \cdot \mathrm{~L} & 2 \cdot \mathrm{~L}^{2} & -6 \cdot \mathrm{~L} & 4 \cdot \mathrm{~L}^{2}
\end{array}\right)
\end{aligned}
$$

substituting $\mathrm{bb}=\mathrm{E}^{*} / / \mathrm{L}^{\wedge} 3$
note that this is similar to M 1 and M 2 with sign reversal in top element
$S=\frac{E \cdot I}{L^{3}}\left[\begin{array}{cccc}\left(\begin{array}{llll}-6 \cdot L & -4 \cdot L^{2} & 6 \cdot L & -2 \cdot L^{2}\end{array}\right) \\ \left(\begin{array}{llll}6 \cdot L & 2 \cdot L^{2} & -6 \cdot L & 4 \cdot L^{2}\end{array}\right)\end{array}\right]$

## step V: obtain the element stiffness matrix ke by relating nodal forces to nodal displacements

$\left.\begin{array}{l}\text { we will do this by the principle of virtual work: } \\ \text { assume an arbitrary virtual nodal displacement: } \\ \text { al work is force * virtual deflection: } \quad \delta_{-} \text {star }:=\left(\begin{array}{c}\mathrm{v} 1_{-} \text {star } \\ \mathrm{v}^{\prime} \text { _star } \\ \mathrm{v} 2_{-} \text {star }\end{array}\right) \quad \text { actual nodal forces are: } \\ \mathrm{v} 2^{\prime} \text { _star }\end{array}\right) \quad \mathrm{f}:=\left(\begin{array}{c}\mathrm{f} 1 \\ \mathrm{M} 1 \\ \mathrm{ext} \\ \mathrm{f} 2 \\ \mathrm{M} 2\end{array}\right)$
$\mathrm{W}_{\mathrm{ext}} \rightarrow \mathrm{v} 1_{-}$star•f1 + v1'_star• $\mathrm{M} 1+\mathrm{v} 2 \_$star•f2 $+\mathrm{v} 2^{\prime}$ _star $\cdot \mathrm{M} 2$
internal work = work done in imposing curvature on the beam: $\quad W_{i n t}:=\int_{0}^{L} v_{-} 2 p r_{-} \operatorname{star}(x)^{T} \cdot M(x) d x$
for an arbitrary virtual curvature $v^{\prime} \_\operatorname{star}(x)$

$$
\mathrm{M}(\mathrm{x})=\text { internal_moment }
$$

using transpose as $v$ "_star $(x)$ is a scalar but will involve $4 x 1$ vectors to multiply the scalar $M(x)$ with vector components later.
if arbitrary virtual curvature $v$ "_star( $x$ ) is imposed indirectly by virtual nodal displacement $v$ "_star $(x)$ is related to the $\delta \_$star by $B(x)$

$$
\begin{array}{ll}
\mathrm{v} \_2 \operatorname{pr}(\mathrm{x}):=\mathrm{B}(\mathrm{x}) \cdot \delta_{-} \text {nodes } & \text { from above } \\
\mathrm{v} \_2 \mathrm{pr}_{-} \operatorname{star}(\mathrm{x}):=\mathrm{B}(\mathrm{x}) \cdot \delta \_ \text {star } & \delta_{-} \operatorname{star} \\
\text { is understood to be nodal }
\end{array}
$$

and ...

$$
\mathrm{v}_{-} 2 \mathrm{pr}_{-} \operatorname{star}(\mathrm{x})^{\mathrm{T}}=\left(\mathrm{B}(\mathrm{x}) \cdot \delta_{-} \operatorname{star}\right)^{\mathrm{T}}=\delta_{-} \operatorname{star}^{\mathrm{T}} \cdot \mathrm{~B}(\mathrm{x})^{\mathrm{T}}
$$

now using $\quad M(x)=E \cdot I \cdot \frac{d^{2}}{d x^{2}} v(x)=E \cdot I \cdot v_{-} 2 \operatorname{pr}(x) \quad v_{-} 2 \operatorname{pr}(x):=B(x) \cdot \delta \_$nodes $\quad M(x)=E \cdot I \cdot B(x) \cdot \delta \_$nodes
$W_{\text {int }}=\int_{0}^{\mathrm{L}} \mathrm{v}_{-} 2 \mathrm{pr}_{-} \operatorname{star}(\mathrm{x})^{\mathrm{T}} \cdot \mathrm{M}(\mathrm{x}) \mathrm{dx}=\int_{0}^{\mathrm{L}} \delta_{-} \operatorname{star}^{\mathrm{T}} \cdot \mathrm{B}(\mathrm{x})^{\mathrm{T}} \cdot \mathrm{E} \cdot \mathrm{I} \cdot \mathrm{B}(\mathrm{x}) \cdot \delta_{-}$nodes $d x$
taking the constants outside the integral and equating internal to external work the constants have to come out of the correct side to maintain matrix math

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ext}}=\delta_{-} \operatorname{star}^{\mathrm{T}} \cdot \mathrm{f}=\mathrm{W}_{\mathrm{int}}=\delta_{-} \mathrm{star}^{\mathrm{T}} \cdot \mathrm{E} \cdot \mathrm{I} \int_{0}^{\mathrm{L}} \mathrm{~B}(\mathrm{x})^{\mathrm{T}} \cdot \mathrm{~B}(\mathrm{x}) \mathrm{dx} \cdot \delta_{-} \text {nodes } \quad \text { cancelling } \delta_{-} \text {star }=> \\
& f=E \cdot I \int_{0}^{L} B(x)^{T} \cdot B(x) d x \cdot \delta_{-} \text {nodes }=k_{e} \cdot \delta_{-} \text {nodes } \quad \text { what we came for } \quad k_{e}=E \cdot I \cdot \int_{0}^{L} B(x)^{T} \cdot B(x) d x \\
& \binom{\frac{-6}{L^{2}}+12 \cdot \frac{x}{L^{3}}}{\frac{-4}{L}+6 \cdot \frac{x}{2}} \quad B(x) \rightarrow\left(\frac{-6}{L^{2}}+12 \cdot \frac{x}{L^{3}} \frac{-4}{L}+6 \cdot \frac{x}{L^{2}} \frac{6}{L^{2}}-12 \cdot \frac{x}{L^{3}} \frac{-2}{L}+6 \cdot \frac{x}{L^{2}}\right) \\
& B(x)^{T} \rightarrow\left|\begin{array}{cr}
L & L^{2} \\
\frac{6}{L^{2}}-12 \cdot \frac{x}{L^{3}}
\end{array}\right| \quad \text { all we need is } \int_{0}^{L} B(x)^{T} \cdot B(x) d x \\
& \text { (it won't compute symbolicly so I wrote it out in } \\
& \text { the collapsed area) }
\end{aligned}
$$

$\square$
result;
copied from rhs

$$
\int_{0}^{\mathrm{L}} \mathrm{~B}(\mathrm{x})^{\mathrm{T}} \cdot \mathrm{~B}(\mathrm{x}) \mathrm{dx}=\left(\begin{array}{cccc}
\frac{12}{\mathrm{~L}^{3}} & \frac{6}{\mathrm{~L}^{2}} & \frac{-12}{\mathrm{~L}^{3}} & \frac{6}{\mathrm{~L}^{2}} \\
\frac{6}{\mathrm{~L}^{2}} & \frac{4}{\mathrm{~L}} & \frac{-6}{\mathrm{~L}^{2}} & \frac{2}{\mathrm{~L}} \\
\frac{-12}{\mathrm{~L}^{3}} & \frac{-6}{\mathrm{~L}^{2}} & \frac{12}{\mathrm{~L}^{3}} & \frac{-6}{\mathrm{~L}^{2}} \\
\frac{6}{\mathrm{~L}^{2}} & \frac{2}{\mathrm{~L}} & \frac{-6}{\mathrm{~L}^{2}} & \frac{4}{\mathrm{~L}}
\end{array}\right)
$$

$$
\mathrm{k}_{\mathrm{e}}=\mathrm{E} \cdot \mathrm{I} \cdot \int_{0}^{\mathrm{L}} \mathrm{~B}(\mathrm{x})^{\mathrm{T}} \cdot \mathrm{~B}(\mathrm{x}) \mathrm{dx}=\mathrm{E} \cdot \mathrm{I} \cdot\left(\begin{array}{cccc}
\frac{12}{\mathrm{~L}^{3}} & \frac{6}{L^{2}} & \frac{-12}{\mathrm{~L}^{3}} & \frac{6}{L^{2}} \\
\frac{6}{L^{2}} & \frac{4}{\mathrm{~L}} & \frac{-6}{\mathrm{~L}^{2}} & \frac{2}{\mathrm{~L}} \\
\frac{-12}{\mathrm{~L}^{3}} & \frac{-6}{L^{2}} & \frac{12}{L^{3}} & \frac{-6}{L^{2}} \\
\frac{6}{L^{2}} & \frac{2}{\mathrm{~L}} & \frac{-6}{L^{2}} & \frac{4}{\mathrm{~L}}
\end{array}\right)
$$

so ...

$$
\left(\begin{array}{c}
\mathrm{f}_{\mathrm{y} 1} \\
\mathrm{M} 1 \\
\mathrm{f}_{\mathrm{y} 2} \\
\mathrm{M} 2
\end{array}\right)=\frac{\mathrm{E} \cdot \mathrm{I}}{\mathrm{~L}^{3}} \cdot\left(\left.\begin{array}{cccc}
12 & 6 \cdot \mathrm{~L} & -12 & 6 \cdot \mathrm{~L} \\
6 \cdot \mathrm{~L} & 4 \cdot \mathrm{~L}^{2} & -6 \cdot \mathrm{~L} & 2 \cdot \mathrm{~L}^{2} \\
-12 & -6 \cdot \mathrm{~L} & 12 & -6 \cdot \mathrm{~L}
\end{array} \right\rvert\, \cdot\left(\begin{array}{c}
\mathrm{v}_{1} \\
\theta_{1} \\
6 \cdot \mathrm{~L} \\
2 \cdot L^{2}
\end{array}\right)\right.
$$

$$
\mathrm{f}=\mathrm{k}_{\mathrm{e}} \cdot \delta
$$

