Matrix Analysis, Grillage, intro to Finite Element Modeling

suppose we were to analyze this pin-jointed structure what are some of the analysis tools we would use? is this statically determinant?
when we write down the model, what equations result single multiple?
equilibrium
compatibility of displacements
laws of material behavior
results in set of simultaneous equations in terms of structure forces and displacements form is

$$
\mathrm{F}=\mathrm{K} \cdot \delta
$$

it would be nice to develop an organized approach to similar problems:
Matrix Analysis of Structures
start with pin jointed frame: section 5.2
we want the law of material behavior: in this case a relation between force and displacement we will refer to this as a stiffness matrix and a relationship between an element and the structure it is a part of
we will address the compatibility of displacements only on a single element at this stage

the element stiffness matrix:

$$
\mathrm{f}=\mathrm{k}_{\mathrm{e}} \cdot \delta \quad\left(\begin{array}{c}
\mathrm{u}_{1} \\
\mathrm{v}_{1} \\
\mathrm{u}_{2} \\
\mathrm{v}_{2}
\end{array}\right) \quad \mathrm{f}=\left(\begin{array}{c}
\mathrm{fx}_{1} \\
\mathrm{fy}_{1} \\
\mathrm{fx}_{2} \\
\mathrm{fy}_{2}
\end{array}\right)
$$

note: even though v and $f y=0$, will carry due to compatibility with structure
laws of material behavior (Hooke), for details including relationship of "internal" stress/force see collapsed area

$$
\begin{aligned}
& \frac{\mathrm{f}_{1}}{\mathrm{~A}}=\mathrm{E} \cdot \frac{\Delta \mathrm{~L}}{\mathrm{~L}}=\mathrm{E} \cdot \frac{\mathrm{u}_{1}-\mathrm{u}_{2}}{\mathrm{~L}} \\
& \text { or } \ldots \quad f_{1}=\frac{A \cdot E}{L} \cdot\left(u_{1}-u_{2}\right) \\
& f=\left(\begin{array}{l}
\mathrm{fx}_{1} \\
\mathrm{fy}_{1} \\
\mathrm{fx}_{2} \\
\mathrm{fy}_{2}
\end{array}\right)=\frac{\mathrm{A} \cdot \mathrm{E}}{\mathrm{~L}} \cdot\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\mathrm{u}_{1} \\
\mathrm{v}_{1} \\
\mathrm{u}_{2} \\
\mathrm{v}_{2}
\end{array}\right) \\
& \mathrm{k}_{\mathrm{e}}=\frac{\mathrm{A} \cdot \mathrm{E}}{\mathrm{~L}} \cdot\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

D
this is the element stiffness matrix $\quad \mathrm{f}=\mathrm{k}_{\mathrm{c}} \mathrm{\delta}$ in the equation
the element stress matrix is related to the internal force $=-\mathrm{fx} 1$ or $=\mathrm{fx} 2$
$\sigma=\frac{-f_{x 1}}{A}=-\frac{E}{L} \cdot\left(\begin{array}{llll}1 & 0 & -1 & 0\end{array}\right) \cdot\left(\begin{array}{l}u_{1} \\ v_{1} \\ u_{2}\end{array}\right) \quad \Rightarrow \quad S e=\frac{E}{L} \cdot\left(\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\right)$
now let's connect to the structure coordinate system:
structure forces

$$
\mathrm{fx}_{1}=\mathrm{Fx}_{1} \cdot \cos (\phi)+\mathrm{Fy}_{1} \cdot \sin (\phi)
$$

$$
\mathrm{fy}_{1}=-\mathrm{Fx}_{1} \cdot \sin (\phi)+\mathrm{Fy}_{1} \cdot \cos (\phi)
$$

$$
\text { same for node } 2
$$

N.B. ϕ is the angle measured CCW from the structure X to the element x coordinate direction
this matrix has the special property that the inverse is = to the transpose

$$
\begin{aligned}
& \text { if substitute } \quad \lambda=\cos (\phi) \quad \mu=\sin (\phi)
\end{aligned}
$$

$$
\begin{aligned}
& \text { but ... recall ... } \quad \lambda:=\cos (\phi) \quad \mu:=\sin (\phi) \\
& \lambda^{2}+\mu^{2} \text { simplify } \rightarrow 1 \quad \text { restating } \ldots \quad \mathrm{T}:=\left(\begin{array}{cccc}
\lambda & \mu & 0 & 0 \\
-\mu & \lambda & 0 & 0 \\
0 & 0 & \lambda & \mu \\
0 & 0 & -\mu & \lambda
\end{array}\right) \\
& \mathrm{T}^{\mathrm{T}} \rightarrow\left(\begin{array}{cccc}
\cos (\phi) & -\sin (\phi) & 0 & 0 \\
\sin (\phi) & \cos (\phi) & 0 & 0 \\
0 & 0 & \cos (\phi) & -\sin (\phi)
\end{array} \left\lvert\, \quad \mathrm{T}^{-1} \operatorname{simplify} \rightarrow\left(\begin{array}{cccc}
\cos (\phi) & -\sin (\phi) & 0 & 0 \\
\sin (\phi) & \cos (\phi) & 0 & 0 \\
0 & 0 & \cos (\phi) & -\sin (\phi)
\end{array}\right)\right.\right.
\end{aligned}
$$

the same transformation relation applies to displacement
structure element

$$
\Delta=\left(\begin{array}{c}
\mathrm{U}_{1} \\
\mathrm{~V}_{1} \\
\mathrm{U}_{2} \\
\mathrm{v}_{2}
\end{array}\right)
$$

$$
\delta=\left(\begin{array}{c}
\mathrm{u}_{1} \\
\mathrm{v}_{1} \\
\mathrm{u}_{2} \\
\mathrm{v}_{2}
\end{array}\right)
$$

$$
\delta=\mathrm{T} \cdot \Delta
$$

now we have all that is required to determine the stiffness matrix in structure coordinates:
taking our element stiffness equation and substituting the two transformation equations we just developed:
$\mathrm{f}=\mathrm{k}_{\mathrm{e}} \cdot \delta$
$\mathrm{f}=\mathrm{T} \cdot \mathrm{F}$
$\delta=\mathrm{T} \cdot \Delta$
$\mathrm{f}=\mathrm{T} \cdot \mathrm{F}=\mathrm{k}_{\mathrm{e}} \cdot \delta=\mathrm{k}_{\mathrm{e}} \cdot \mathrm{T} \cdot \Delta \quad \Rightarrow \quad \mathrm{T} \cdot \mathrm{F}=\mathrm{k}_{\mathrm{e}} \cdot \mathrm{T} \cdot \Delta$
pre-multiply by T inverse (= T transform) $\quad \mathrm{T}^{\mathrm{T}} \cdot \mathrm{T} \cdot \mathrm{F}=\mathrm{F}=\mathrm{T}^{\mathrm{T}} \cdot \mathrm{k}_{\mathrm{e}} \cdot \mathrm{T} \cdot \Delta$
so our structure stiffness matrix $=\quad K_{e}=T^{T} \cdot \mathrm{k}_{\mathrm{e}} \cdot \mathrm{T}$
this is the element stiffness in structure coordinates

$$
\begin{aligned}
& \text { or } \mathrm{k}_{\mathrm{e}}:=\frac{\mathrm{A} \cdot \mathrm{E}}{\mathrm{~L}} \cdot\left(\left.\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0
\end{array} \right\rvert\,\right. \\
& 0
\end{aligned} 0
$$

$$
\frac{\mathrm{K}_{\mathrm{e}}}{\left(\frac{\mathrm{~A} \cdot \mathrm{E}}{\mathrm{~L}}\right)} \rightarrow\left(\begin{array}{cccc}
\cos (\phi)^{2} & \cos (\phi) \cdot \sin (\phi) & -\cos (\phi)^{2} & -\cos (\phi) \cdot \sin (\phi)) \\
\cos (\phi) \cdot \sin (\phi) & \sin (\phi)^{2} & -\cos (\phi) \cdot \sin (\phi) & -\sin (\phi)^{2} \\
-\cos (\phi)^{2} & -\cos (\phi) \cdot \sin (\phi) & \cos (\phi)^{2} & \cos (\phi) \cdot \sin (\phi) \\
-\cos (\phi) \cdot \sin (\phi) & -\sin (\phi)^{2} & \cos (\phi) \cdot \sin (\phi) & \sin (\phi)^{2}
\end{array}\right)
$$

eqn. 5.2.9 in terms of cos and sin
we will now address multiple elements in a system demonstrating the process referred to as

assembly

to address this we will first approach it using the result from previous

Matrix Analysis Example Hughes figure 5.12 page 191 ff

in this case ...

n_elements := $3 \quad$ n_nodes $:=3$
n_free := 2 number of degrees of freedom per node
n_dof $:=$ n_nodes•n_free total number of degrees of freedom in structure
nod_el $:=2 \quad$ nodes per element
let's define the structure in a matrix listing the nodes associated with each element as follows

$$
\begin{array}{ll}
\text { elem }:=\left(\begin{array}{ll}
1 & 2 \\
1 & 3 \\
2 & 3
\end{array}\right) & \begin{array}{l}
\text { next, let's expand this matrix to the degrees of freedom } \\
\text { sometimes referred to as the topology matrix or location matrix }
\end{array} \\
& \text { ie }:=1 . . n _ \text {elements } \quad j:=1 . . n _ \text {free } \quad k:=0 . . n _ \text {free }-1
\end{array}
$$

odd $\operatorname{dof} k=1 \quad$ top $_{i e, n_{-} \text {free } \cdot j-k}:=n_{-}$free elem
even,j
dof $k=0$

$$
\text { top }=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 5 & 6 \\
3 & 4 & 5 & 6
\end{array}\right)
$$

this says for example, the second degree of freedom in element \#2 lines up with the second dof in the structure ...

$$
\begin{array}{lll}
\text { ie }:=2 & \text { jj }:=2 & \text { top }_{\mathrm{ie}, \mathrm{jj}}=2 \\
\text { ie }:=3 & \text { jj }:=1 & \text { top }_{\mathrm{ie}, \mathrm{jj}}=3
\end{array}
$$

while the first dof of element 3 lines up with the third dof in the structure
now represent each of the three stiffness matrices as follows:

$$
\mathrm{Ke}_{1}:=\left(\left.\begin{array}{cccc}
\mathrm{a} 11 & \mathrm{a} 12 & \mathrm{a} 13 & \mathrm{a} 14 \\
\mathrm{a} 21 & \mathrm{a} 22 & \mathrm{a} 23 & \mathrm{a} 24 \\
\mathrm{a} 31 & \mathrm{a} 32 & \mathrm{a} 33 & \mathrm{a} 34
\end{array} \right\rvert\, \quad \mathrm{Ke}_{2}:=\left(\begin{array}{cccc}
\mathrm{b} 11 & \mathrm{~b} 12 & \mathrm{~b} 13 & \mathrm{~b} 14 \\
\mathrm{a} 41 & \mathrm{a} 42 & \mathrm{a} 43 & \mathrm{a} 44
\end{array}\right) \quad \mathrm{Ke}_{3}:=\left(\begin{array}{cccc}
\mathrm{c} 11 & \mathrm{c} 12 & \mathrm{c} 13 & \mathrm{c} 14 \\
\mathrm{c} 21 & \mathrm{c} 22 & \mathrm{c} 23 & \mathrm{c} 24 \\
\mathrm{~b} 31 & \mathrm{~b} 32 & \mathrm{~b} 33 & \mathrm{~b} 34 \\
\mathrm{c} 31 \\
\mathrm{c} 1 & \mathrm{~b} 42 & \mathrm{~b} 43 & \mathrm{~b} 44
\end{array}\right)\right.
$$

we could develop each expanded stiffness matrix ...

$$
\operatorname{Ke1}_{6,6}:=0
$$

$$
\mathrm{i}:=1 \text {.. nod_eln_free } \quad j:=1 \text {.. nod_eln_free }
$$

$$
\begin{aligned}
& \text { ie }:=1 \\
& \mathrm{Kel}_{\text {top }_{\mathrm{ie}, \mathrm{i},}, \text { top }_{\mathrm{ie}, \mathrm{j}}}:=\left(\mathrm{Ke}_{\mathrm{ie}}\right)_{\mathrm{i}, \mathrm{j}} \quad \quad \mathrm{Ke}_{1}:=\mathrm{Kel}
\end{aligned}
$$

$$
\mathrm{Ke}_{6,6}:=0
$$

$$
\mathrm{Ke}_{1} \rightarrow\left(\begin{array}{cccccc}
\mathrm{a} 11 & \mathrm{a} 12 & \mathrm{a} 13 & \mathrm{a} 14 & 0 & 0 \\
\mathrm{a} 21 & \mathrm{a} 22 & \text { a23 } & \text { a24 } & 0 & 0 \\
\mathrm{a} 31 & \mathrm{a} 32 & \mathrm{a} 33 & \mathrm{a} 34 & 0 & 0 \\
\mathrm{a} 41 & \mathrm{a} 42 & \mathrm{a} 43 & \mathrm{a} 44 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\text { ie }:=2
$$

$$
(\mathrm{Ke} 2)_{\text {top }_{\mathrm{ie}, \mathrm{i}}, \text { top }_{\mathrm{ie}, \mathrm{j}}}:=\left(\mathrm{Ke}_{\mathrm{ie}}\right)_{\mathrm{i}, \mathrm{j}} \quad \mathrm{Ke}_{2}:=\mathrm{Ke} 2
$$

$$
\mathrm{Ke}_{2} \rightarrow\left(\begin{array}{cccccc}
\mathrm{b} 11 & \mathrm{~b} 12 & 0 & 0 & \mathrm{~b} 13 & \mathrm{~b} 14 \\
\mathrm{~b} 21 & \mathrm{~b} 22 & 0 & 0 & \text { b23 } & \text { b24 } \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{~b} 31 & \mathrm{~b} 32 & 0 & 0 & \mathrm{~b} 33 & \mathrm{~b} 34 \\
\mathrm{~b} 41 & \mathrm{~b} 42 & 0 & 0 & \mathrm{~b} 43 & \mathrm{~b} 44
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{Ke}_{6,6}:=0 \\
& \qquad \text { ie }:=3 \\
& \mathrm{Ke}_{\text {top }_{\mathrm{ie}, \mathrm{i}}, \text { top }_{\mathrm{ie}, \mathrm{j}}}:=\left(\mathrm{Ke}_{\mathrm{ie}}\right)_{\mathrm{i}, \mathrm{j}} \quad \quad \mathrm{Ke}_{3}:=\mathrm{Ke} 3 \\
& \text { and then add } \quad \mathrm{K}:=\mathrm{Ke}_{1}+\mathrm{Ke}_{2}+\mathrm{Ke}_{3}
\end{aligned}
$$

$$
\mathrm{Ke}_{3} \rightarrow\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{c} 11 & \mathrm{c} 12 & \mathrm{c} 13 & \mathrm{c} 14 \\
0 & 0 & \mathrm{c} 21 & \mathrm{c} 22 & \mathrm{c} 23 & \mathrm{c} 24 \\
0 & 0 & \mathrm{c} 31 & \mathrm{c} 32 & \mathrm{c} 33 & \mathrm{c} 34 \\
0 & 0 & \mathrm{c} 41 & \mathrm{c} 42 & \mathrm{c} 43 & \mathrm{c} 44
\end{array}\right)
$$

$$
\mathrm{K} \rightarrow\left(\begin{array}{cccccc}
\mathrm{a} 11+\mathrm{b} 11 & \mathrm{a} 12+\mathrm{b} 12 & \mathrm{a} 13 & \mathrm{a} 14 & \mathrm{~b} 13 & \mathrm{~b} 14 \\
\mathrm{a} 21+\mathrm{b} 21 & \mathrm{a} 22+\mathrm{b} 22 & \mathrm{a} 23 & \mathrm{a} 24 & \mathrm{~b} 23 & \mathrm{~b} 24 \\
\mathrm{a} 31 & \mathrm{a} 32 & \mathrm{a} 33+\mathrm{c} 11 & \mathrm{a} 34+\mathrm{c} 12 & \mathrm{c} 13 & \mathrm{c} 14 \\
\mathrm{a} 41 & \mathrm{a} 42 & \mathrm{a} 43+\mathrm{c} 21 & \mathrm{a} 44+\mathrm{c} 22 & \mathrm{c} 23 & \mathrm{c} 24 \\
\mathrm{~b} 31 & \mathrm{~b} 32 & \mathrm{c} 31 & \mathrm{c} 32 & \mathrm{~b} 33+\mathrm{c} 33 & \mathrm{~b} 34+\mathrm{c} 34 \\
\mathrm{~b} 41 & \mathrm{~b} 42 & \mathrm{c} 41 & \mathrm{c} 42 & \mathrm{~b} 43+\mathrm{c} 43 & \mathrm{~b} 44+\mathrm{c} 44
\end{array}\right)
$$

eqn. at top of page 193 in text
or ... we could just add in the appropriate term according to the topology matrix ...
redefining the element stiffness matrices ...
iniitialize K ...

$$
\mathrm{K}_{\mathrm{n} _ \text {dof }, \mathrm{n} _ \text {dof }}:=0
$$

ie := 1..n_elements

$$
\mathrm{K}_{\text {top }_{\mathrm{ie}, \mathrm{i}}, \text { top }_{\mathrm{ie}, \mathrm{j}}}:=\mathrm{K}_{\mathrm{top}_{\mathrm{ie}, \mathrm{i}}, \text { top }_{\mathrm{ie}, \mathrm{j}}}+\left(\mathrm{Ke}_{\mathrm{ie}}\right)_{\mathrm{i}, \mathrm{j}}
$$

$\mathrm{K} \rightarrow\left(\begin{array}{cccccc}\mathrm{a} 11+\mathrm{b} 11 & \mathrm{a} 12+\mathrm{b} 12 & \mathrm{a} 13 & \mathrm{a} 14 & \mathrm{~b} 13 & \mathrm{~b} 14 \\ \mathrm{a} 21+\mathrm{b} 21 & \mathrm{a} 22+\mathrm{b} 22 & \mathrm{a} 23 & \mathrm{a} 24 & \mathrm{~b} 23 & \mathrm{~b} 24 \\ \mathrm{a} 31 & \mathrm{a} 32 & \mathrm{a} 33+\mathrm{c} 11 & \mathrm{a} 34+\mathrm{c} 12 & \mathrm{c} 13 & \mathrm{c} 14 \\ \mathrm{a} 41 & \mathrm{a} 42 & \mathrm{a} 43+\mathrm{c} 21 & \mathrm{a} 44+\mathrm{c} 22 & \mathrm{c} 23 & \mathrm{c} 24 \\ \mathrm{~b} 31 & \mathrm{~b} 32 & \mathrm{c} 31 & \mathrm{c} 32 & \mathrm{~b} 33+\mathrm{c} 33 & \mathrm{~b} 34+\mathrm{c} 34 \\ \mathrm{~b} 41 & \mathrm{~b} 42 & \mathrm{c} 41 & \mathrm{c} 42 & \mathrm{~b} 43+\mathrm{c} 43 & \mathrm{~b} 44+\mathrm{c} 44\end{array}\right)$
eqn. at top of page 193 in text

$$
\text { ie }:=3
$$

this algorithm takes the i, j element in the ie th stiffness matrix (in structure coordinates) and adds it to the row and column determined by the ie'th row and $\mathrm{i}=\mathrm{j}$ 'th column in the global stiffness matrix.
so now we have the Stiffness matrix for the structure (it's singular)
next we apply the boundary conditions ...
this step removes the rows and columns of the constraints from the equations
it is the equivalent of writing the compatibility of displacements equations for the free node in this example
ii := 1 .. n_dof

$$
\Delta_{\mathrm{ii}}:=\Delta_{\mathrm{ii}}
$$

and only degrees of freedom 3 and 4 are unconstrained therefore the reduced equations become

$$
\left.F \rightarrow\left(\begin{array}{l}
\left.\mathrm{F}_{1}\right) \\
\mathrm{F}_{2} \\
\mathrm{~F}_{3} \\
\mathrm{~F}_{4} \\
\mathrm{~F}_{5}
\end{array}\right) \quad \Delta \rightarrow\left(\begin{array}{c}
\Delta_{1} \\
\Delta_{2} \\
\mathrm{~F}_{6} \\
\Delta_{3} \\
\Delta_{4} \\
\Delta_{5}
\end{array}\right) \quad \mathrm{F}_{\text {red }}:=\operatorname{submatrix(\mathrm {F},3,4,1,1)} \begin{array}{l}
\\
\Delta_{6}
\end{array}\right) \quad \mathrm{F}_{\mathrm{red}} \rightarrow\binom{\left.\mathrm{~F}_{3}\right)}{\mathrm{F}_{4}}
$$

$$
\begin{aligned}
& \text { and we can solve for } \Delta 3 \text { and } \Delta 4 \\
& \binom{\Delta_{3}}{\Delta_{4}}:=\mathrm{K}_{\mathrm{red}}{ }^{-1} \cdot \mathrm{~F}_{\text {red }} \\
& \binom{\Delta_{3}}{\Delta_{4}} \rightarrow\left(\begin{array}{c}
\frac{\mathrm{a} 44+\mathrm{c} 22}{\mathrm{a} 33 \cdot \mathrm{a} 44+\mathrm{a} 33 \cdot \mathrm{c} 22+\mathrm{c} 11 \cdot \mathrm{a} 44+\mathrm{c} 11 \cdot \mathrm{c} 22-\mathrm{a} 34 \cdot \mathrm{a} 43-\mathrm{a} 34 \cdot \mathrm{c} 21-\mathrm{c} 12 \cdot \mathrm{a} 43-\mathrm{c} 12 \cdot \mathrm{c} 21} \cdot \mathrm{~F}_{3}+\frac{}{\mathrm{a} 33 \cdot \mathrm{a} 44+\mathrm{a} 33 \cdot \mathrm{c} 22} \\
\frac{-\mathrm{a} 43-\mathrm{c} 21}{\mathrm{a} 33 \cdot \mathrm{a} 44+\mathrm{a} 33 \cdot \mathrm{c} 22+\mathrm{c} 11 \cdot \mathrm{a} 44+\mathrm{c} 11 \cdot \mathrm{c} 22-\mathrm{a} 34 \cdot \mathrm{a} 43-\mathrm{a} 34 \cdot \mathrm{c} 21-\mathrm{c} 12 \cdot \mathrm{a} 43-\mathrm{c} 12 \cdot \mathrm{c} 21} \cdot \mathrm{~F}_{3}+\frac{}{\mathrm{a} 33 \cdot \mathrm{a} 44+\mathrm{a} 33 \cdot \mathrm{c} 22}
\end{array}\right. \\
& \Delta_{\mathrm{ii}}:=0 \quad\binom{\Delta_{3}}{\Delta_{4}}:=\binom{\Delta 3}{\Delta 4} \quad \mathrm{~F}:=\mathrm{K} \cdot \Delta \\
& \mathrm{~F} \rightarrow\left[\begin{array}{c}
\mathrm{a} 13 \cdot \Delta 3+\mathrm{a} 14 \cdot \Delta 4 \\
\mathrm{a} 23 \cdot \Delta 3+\mathrm{a} 24 \cdot \Delta 4 \\
(\mathrm{a} 33+\mathrm{c} 11) \cdot \Delta 3+(\mathrm{a} 34+\mathrm{c} 12) \cdot \Delta 4 \\
(\mathrm{a} 43+\mathrm{c} 21) \cdot \Delta 3+(\mathrm{a} 44+\mathrm{c} 22) \cdot \Delta 4 \\
\mathrm{c} 31 \cdot \Delta 3+\mathrm{c} 32 \cdot \Delta 4 \\
\mathrm{c} 41 \cdot \Delta 3+\mathrm{c} 42 \cdot \Delta 4
\end{array}\right]
\end{aligned}
$$

to obtain the element forces the transformation matrix can be applied to Δ in structure coordinates to obtain δ and then ke used to obtain from which stress is determined ...

$$
\begin{aligned}
\text { top }=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 5 & 6 \\
3 & 4 & 5 & 6
\end{array}\right) & \text { ie }:=1 . . \mathrm{n}_{-} \text {elements } \\
& \Delta \mathrm{e}_{\mathrm{ie}, \mathrm{i}}:=\Delta_{\text {top }}^{\mathrm{ie}, \mathrm{i}} \\
& \\
\delta \mathrm{e}=\mathrm{T}_{\mathrm{e}} \cdot \Delta \mathrm{e} & \text { fe }=\mathrm{k}_{\mathrm{e}} \cdot \delta \mathrm{e} \quad \Delta \mathrm{e} \rightarrow\left(\begin{array}{cccc}
0 & 0 & \Delta 3 & \Delta 4 \\
0 & 0 & 0 & 0 \\
\Delta 3 & \Delta 4 & 0 & 0
\end{array}\right)
\end{aligned}
$$

