Matrix Analysis, Grillage, intro to Finite Element Modeling

suppose we were to analyze this pin-jointed structure

what are some of the analysis tools we would use?

is this statically determinant?

when we write down the model, what equations result single multiple?

equilibrium compatibility of displacements laws of material behavior

results in set of simultaneous equations in terms of structure forces and displacements form is

 $F = K \cdot \delta$

it would be nice to develop an organized approach to similar problems:

Matrix Analysis of Structures

start with pin jointed frame: section 5.2

we want the law of material behavior: in this case a relation between force and displacement we will refer to this as a stiffness matrix

and a relationship between an element and the structure it is a part of

we will address the compatibility of displacements only on a single element at this stage

the element stiffness matrix:

$$f = k_e \cdot \delta$$

$$\delta = \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{pmatrix}$$

$$f = \begin{pmatrix} fx_1 \\ fy_1 \\ fx_2 \\ fy_2 \end{pmatrix}$$

note: even though v and fy = 0, will carry due to compatibility with structure

laws of material behavior (Hooke), for details including relationship of "internal" stress/force see collapsed area

$$\frac{f_1}{A} = E \cdot \frac{\Delta L}{L} = E \cdot \frac{u_1 - u_2}{L} \qquad \text{or } \dots \qquad f_1 = \frac{A \cdot E}{L} \cdot (u_1 - u_2)$$

$$f = \begin{pmatrix} fx_1 \\ fy_1 \\ fx_2 \\ fy_2 \end{pmatrix} = \frac{A \cdot E}{L} \cdot \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{pmatrix} \qquad k_e = \frac{A \cdot E}{L} \cdot \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

this is the equation element stiffness matrix $f = k_e \cdot \delta$

the element stress matrix is related to the internal force = -fx1 or = fx2

$$\sigma = \frac{-f_{x1}}{A} = -\frac{E}{L} \cdot (1 \ 0 \ -1 \ 0) \cdot \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{pmatrix} \implies Se = \frac{E}{L} \cdot (-1 \ 0 \ 1 \ 0)$$

now let's connect to the structure coordinate system:

N.B. () is the angle measured CCW from the structure X to the element x coordinate direction if substitute $\lambda = \cos(\phi)$ $\mu = \sin(\phi)$ $f = \begin{pmatrix} fx_1 \\ fy_1 \\ fx_2 \\ fy_2 \end{pmatrix} = \begin{pmatrix} \lambda & \mu & 0 & 0 \\ -\mu & \lambda & 0 & 0 \\ 0 & 0 & \lambda & \mu \\ 0 & 0 & -\mu & \lambda \end{pmatrix} \begin{pmatrix} Fx_1 \\ Fy_1 \\ Fx_2 \\ Fy_2 \end{pmatrix} \quad \text{define } T \quad f = T \cdot F \qquad T := \begin{pmatrix} \lambda & \mu & 0 & 0 \\ -\mu & \lambda & 0 & 0 \\ 0 & 0 & \lambda & \mu \\ 0 & 0 & \cdots & \lambda \end{bmatrix}$ $\begin{pmatrix} 0 & 0 & -\mu & \lambda \end{pmatrix} (Fy_2)$ $T^{T} \rightarrow \begin{pmatrix} \lambda & -\mu & 0 & 0 \\ \mu & \lambda & 0 & 0 \\ 0 & 0 & \lambda & -\mu \\ 0 & 0 & \mu & \lambda \end{pmatrix}$ $T^{-1} \text{ simplify } \rightarrow \begin{pmatrix} \frac{\lambda}{\lambda^{2} + \mu^{2}} & \frac{-\mu}{\lambda^{2} + \mu^{2}} & 0 & 0 \\ \frac{\mu}{\lambda^{2} + \mu^{2}} & \frac{\lambda}{\lambda^{2} + \mu^{2}} & 0 & 0 \\ 0 & 0 & \frac{\lambda}{\lambda^{2} + \mu^{2}} & \frac{-\mu}{\lambda^{2} + \mu^{2}} \\ 0 & 0 & \frac{\mu}{\lambda^{2} + \mu^{2}} & \frac{\lambda}{\lambda^{2} + \mu^{2}} \end{pmatrix}$ but ... recall ... $\lambda := \cos(\phi)$ $\mu := \sin(\phi)$ $\lambda^2 + \mu^2 \text{ simplify } \rightarrow 1$ restating ... $T := \left(\begin{array}{cccc} \lambda & \mu & 0 & 0 \\ -\mu & \lambda & 0 & 0 \\ 0 & 0 & \lambda & \mu \end{array} \right)$ $T^{T} \rightarrow \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 & 0 \\ \sin(\phi) & \cos(\phi) & 0 & 0 \\ 0 & 0 & \cos(\phi) & -\sin(\phi) \\ 0 & 0 & \cos(\phi) \\ 0 & 0$

this matrix has the special property that the inverse is = to the transpose

the same transformation relation applies to displacement structure element

$$\Delta = \begin{pmatrix} U_1 \\ V_1 \\ U_2 \\ V_2 \end{pmatrix} \qquad \qquad \delta = \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{pmatrix} \qquad \qquad \delta = T \cdot \Delta$$

now we have all that is required to determine the stiffness matrix in structure coordinates: taking our element stiffness equation and substituting the two transformation equations we just developed:

$$f = k_e \cdot \delta \qquad f = T \cdot F \qquad \delta = T \cdot \Delta$$
$$F = T \cdot F = k_e \cdot \delta = k_e \cdot T \cdot \Delta \qquad => \qquad T \cdot F = k_e \cdot T \cdot \Delta$$

$$f = T \cdot F = k_e \cdot \delta = k_e \cdot T \cdot \Delta$$

this is the

 $T^{T} \cdot T \cdot F = F = T^{T} \cdot k_{e} \cdot T \cdot \Delta$

pre-multiply by T inverse (= T transform)

 $K_e = T^T \cdot k_e \cdot T$

so our structure stiffness matrix =

element stiffness in structure coordinates

$$\frac{K_{e}}{\left(\frac{A \cdot E}{L}\right)} \rightarrow \begin{pmatrix} \cos(\phi)^{2} & \cos(\phi) \cdot \sin(\phi) & -\cos(\phi)^{2} & -\cos(\phi) \cdot \sin(\phi) \\ \cos(\phi) \cdot \sin(\phi) & \sin(\phi)^{2} & -\cos(\phi) \cdot \sin(\phi) & -\sin(\phi)^{2} \\ -\cos(\phi)^{2} & -\cos(\phi) \cdot \sin(\phi) & \cos(\phi)^{2} & \cos(\phi) \cdot \sin(\phi) \\ -\cos(\phi) \cdot \sin(\phi) & -\sin(\phi)^{2} & \cos(\phi) \cdot \sin(\phi) & \sin(\phi)^{2} \end{pmatrix}$$

eqn. 5.2.9 in terms of cos and sin

notes_33_matrix_grillage_fem_intro.mcd

we will now address multiple elements in a system demonstrating the process referred to as

assembly

to address this we will first approach it using the result from previous

ORIGIN := 1

- i = 1 number of nodes (forces, n per node)
- j = 1 number of nodes (displacements, n per node)

 $\begin{pmatrix} Ke_{ie} \\ ie \end{pmatrix}_{i, j}$ = n x n matrix linear elastically connecting force at element node i to displacement node j where n = number of dof per node

Matrix Analysis Example Hughes figure 5.12 page 191 ff

in this case ...

n_elements := 3 n_nodes := 3

n free := 2 number of degrees of freedom per node

 $n \text{ dof} := n \text{ nodes} \cdot n \text{ free}$ total number of degrees of freedom in structure

nod el := 2 nodes per element

let's define the structure in a matrix listing the nodes associated with each element as follows

elem := $\begin{pmatrix} 1 & 2 \\ 1 & 3 \\ 2 & 3 \end{pmatrix}$ next, let's expand this matrix to the degrees of freedom sometimes referred to as the topology matrix or location matrix ie := 1.. n elements j := 1.. n free k := 0.. n free - 1

 $I = I \dots I_{i}$ elements $J = I \dots I_{i}$ free $K = 0 \dots I_{i}$ free -

odd dof $k = 1$	$top_{ie, n_{free}, j-k} := n_{free elem_{ie, j}} - k$		$(1 \ 2 \ 3 \ 4)$
even dof k = 0		top =	1 2 5 6
			(3 4 5 6)

this says for example, the second degree of freedom in element #2 lines up with the second dof in the structure ...

ie := 2	jj := 2	$top_{ie, jj} = 2$	while the first dof of element 3 lines up with the third dof in the
		. 55	structure
1e := 3	jj := 1	$top_{ie, jj} = 3$	

now represent each of the three stiffness matrices as follows:

$$\operatorname{Ke}_{1} := \begin{pmatrix} a11 & a12 & a13 & a14 \\ a21 & a22 & a23 & a24 \\ a31 & a32 & a33 & a34 \\ a41 & a42 & a43 & a44 \end{pmatrix} \qquad \operatorname{Ke}_{2} := \begin{pmatrix} b11 & b12 & b13 & b14 \\ b21 & b22 & b23 & b24 \\ b31 & b32 & b33 & b34 \\ b41 & b42 & b43 & b44 \end{pmatrix} \qquad \operatorname{Ke}_{3} := \begin{pmatrix} c11 & c12 & c13 & c14 \\ c21 & c22 & c23 & c24 \\ c31 & c32 & c33 & c34 \\ c41 & c42 & c43 & c44 \end{pmatrix}$$

we could develop each expanded stiffness matrix ...

 $Kel_{6,6} := 0$

$$i := 1 \dots nod_eln_free$$
 $j := 1 \dots nod_eln_free$

$$\operatorname{Ke3}_{\operatorname{top}_{ie,i}, \operatorname{top}_{ie,j}} := \left(\frac{\operatorname{Ke}_{ie}}{ie} \right)_{i,j}$$
 $\operatorname{Ke}_3 := \operatorname{Ke3}$

and then add $K := \mathbf{K}\mathbf{e}_1 + \mathbf{K}\mathbf{e}_2 + \mathbf{K}\mathbf{e}_3$

$$K \rightarrow \begin{pmatrix} a11 + b11 & a12 + b12 & a13 & a14 & b13 & b14 \\ a21 + b21 & a22 + b22 & a23 & a24 & b23 & b24 \\ a31 & a32 & a33 + c11 & a34 + c12 & c13 & c14 \\ a41 & a42 & a43 + c21 & a44 + c22 & c23 & c24 \\ b31 & b32 & c31 & c32 & b33 + c33 & b34 + c34 \\ b41 & b42 & c41 & c42 & b43 + c43 & b44 + c44 \end{pmatrix} eqn. at top of page 193 in text$$

or ... we could just add in the appropriate term according to the topology matrix ... redefining the element stiffness matrices ...

$$Ke_{1} := \begin{pmatrix} a11 & a12 & a13 & a14 \\ a21 & a22 & a23 & a24 \\ a31 & a32 & a33 & a34 \\ a41 & a42 & a43 & a44 \end{pmatrix} Ke_{2} := \begin{pmatrix} b11 & b12 & b13 & b14 \\ b21 & b22 & b23 & b24 \\ b31 & b32 & b33 & b34 \\ b41 & b42 & b43 & b44 \end{pmatrix} Ke_{3} := \begin{pmatrix} c11 & c12 & c13 & c14 \\ c21 & c22 & c23 & c24 \\ c31 & c32 & c33 & c34 \\ c41 & c42 & c43 & c44 \end{pmatrix}$$

iniitialize K ...

ie := 1 .. n elements

 $K_{n_dof, n_dof} := 0$

$$\mathbf{K}_{\operatorname{top}_{ie,i},\operatorname{top}_{ie,j}} := \mathbf{K}_{\operatorname{top}_{ie,i},\operatorname{top}_{ie,j}} + \left(\mathbf{Ke}_{ie} \right)_{i,j}$$

	(a11 + b11	a12 + b12	a13	a14	b13	b14	
	a21 + b21	a22 + b22	a23	a24	b23	b24	
	a31	a32	a33 + c11	a34 + c12	c13	c14	
	a41	a42	a43 + c21	a44 + c22	c23	c24	
	b31	b32	c31	c32	b33 + c33	b34 + c34	
	b41	b42	c41	c42	b43 + c43	b44 + c44)	

eqn. at top of page 193 in text

ie := 3

this algorithm takes the i,j element in the ie th stiffness matrix (in structure coordinates) and adds it to the row and column determined by the ie'th row and i = j 'th column in the global stiffness matrix.

so now we have the Stiffness matrix for the structure (it's singular) next we apply the boundary conditions ...

 $\Delta_{ii} := \Delta_{ii}$

 Δ_3

 Δ_4 Δ_5 Δ_6

 $\Delta \rightarrow$

this step removes the rows and columns of the constraints from the equations

it is the equivalent of writing the compatibility of displacements equations for the free node in this example

 $ii := 1 .. n_dof$

 (F_1)

 $F \rightarrow \begin{vmatrix} F_2 \\ F_3 \\ F_4 \\ F_5 \end{vmatrix}$

 F_6

F_{ii} := F_{ii}

and only degrees of freedom 3 and 4 are unconstrained

therefore the reduced equations become

$$K_{red} := submatrix(\mathbf{K}, 3, 4, 3, 4)$$

$$K_{\text{red}} \rightarrow \begin{pmatrix} a33 + c11 & a34 + c12 \\ a43 + c21 & a44 + c22 \end{pmatrix}$$

and we can solve for ${\rm \Delta}3$ and ${\rm \Delta}4$

$$\begin{pmatrix} \Delta_3 \\ \Delta_4 \end{pmatrix} \coloneqq \mathbf{K_{red}}^{-1} \cdot \mathbf{F_{red}}$$

$$\begin{pmatrix} \Delta_3 \\ \Delta_4 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{a44 + c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22 + c11 \cdot a44 + c11 \cdot c22 - a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a33 \cdot a44 + a33 \cdot c22} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a34 \cdot a43 - a34 \cdot c21 - c12 \cdot a43 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a34 \cdot a43 - a34 \cdot c21 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a34 \cdot a43 - a34 \cdot c21 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a34 \cdot a43 - a34 \cdot c21 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a34 \cdot a43 - a34 \cdot c21 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a34 \cdot a43 - a34 \cdot c21 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot a44 + a33 \cdot c22}{a34 \cdot a44 + a33 \cdot c21 - c12 \cdot c21} \cdot F_3 + \frac{a33 \cdot c21 + c12 \cdot c$$

$$\Delta_{ii} \coloneqq 0 \qquad \begin{pmatrix} \Delta_3 \\ \Delta_4 \end{pmatrix} \coloneqq \begin{pmatrix} \Delta 3 \\ \Delta 4 \end{pmatrix} \qquad F \coloneqq \mathbf{K} \cdot \Delta \qquad F \rightarrow \begin{bmatrix} a13 \cdot \Delta 3 + a14 \cdot \Delta 4 \\ a23 \cdot \Delta 3 + a24 \cdot \Delta 4 \\ (a33 + c11) \cdot \Delta 3 + (a34 + c12) \cdot \Delta 4 \\ (a43 + c21) \cdot \Delta 3 + (a44 + c22) \cdot \Delta 4 \\ c31 \cdot \Delta 3 + c32 \cdot \Delta 4 \\ c41 \cdot \Delta 3 + c42 \cdot \Delta 4 \end{bmatrix}$$

to obtain the element forces the transformation matrix can be applied to Δ in structure coordinates to obtain δ and then ke used to obtain f from which stress is determined ...

$$top = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 5 & 6 \\ 3 & 4 & 5 & 6 \end{pmatrix} \qquad ie := 1 .. n_elements$$
$$\Delta e_{ie,i} := \Delta_{top_{ie,i}} \qquad \Delta e \rightarrow \begin{pmatrix} 0 & 0 & \Delta 3 & \Delta 4 \\ 0 & 0 & 0 & 0 \\ \Delta 3 & \Delta 4 & 0 & 0 \end{pmatrix}$$

 $\delta e = T_e \cdot \Delta e$ fe = $k_e \cdot \delta e$ σ = Se \cdot \delta e