
Matrix Analysis, Grillage, intro to Finite 
Element Modeling 

suppose we were to analyze this pin-jointed structure 

what are some of the analysis tools we would use? 

is this statically determinant? 

when we write down the model, what equations result 
single 
multiple? 

equilibrium 

compatibility of displacements

laws of material behavior


results in set of simultaneous equations in terms of 

structure forces and displacements

form is 


F = K⋅δ 

Px 

Py


it would be nice to develop an organized approach to similar problems: 

Matrix Analysis of Structures 

start with pin jointed frame: section 5.2 

we want the law of material behavior: in this case a relation between force and displacement 
we will refer to this as a stiffness matrix 

and a relationship between an element and the structure it is a part of 

we will address the compatibility of displacements only on a single element at this stage 

Y,V


node 1 

node 2 

x,u 
y,v 

φ 

defines an element and a structure 
coordinate system 
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X,U




fy2 

element x,y u,v 

x2,u2 
y1,v1 
fy1 y2,v2 fx2 

x1,u1 
fx1 

node 1 node 2 

the element stiffness matrix: 

f = ke⋅δ 
 
u1  

 
fx1  

note: even though v and fy = 0, will carry 

δ = 

 
v1 
 f = 


 
fy1 

 
due to compatibility with structure 

 u2   fx2 



 v2  

 fy2 


laws of material behavior (Hooke), for details including relationship of "internal" stress/force see collapsed area 

⋅ 
f1 = E⋅ ∆L = E⋅ 

u1 − u2 or ... A E
A L L f1 = 

L 
⋅(u1 − u2) 

 fx1   1 0 −1 0  
 u1   

1 0 −1 0  
⋅

 A E  0 0 0 0  
f = 


 
fy1 

 = A E  
⋅ 
0 0 0 0 ⋅


 
v1 
 

ke = 
L 

⋅ 
⋅

 
−1 0 1 0  

 fx2  L −1 0 1 0   u2     0 0 0 0  fy2 
 0 0 0 0  

 v2  

this is the element stiffness matrix f = ke⋅δ 

in the equation 

the element stress matrix is related to the internal force = -fx1 or = fx2 

 u1   
−fx1 E  v1  

σ = 
A 

= − 
L 
⋅( 1 0  −1 0)⋅


 
u2 
 => 

Se = E 
⋅( −1 0 1  0)
L 

 
 v2  
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µ 

φφ

µ 

now let's connect to the structure coordinate system: 

structure forces 
Y,V 

node 1 

node 2 

x,u 
y,v 

φ 

 Fx1 


 Fy1  fx1 = Fx1⋅cos φ ( ) 
( ) + Fy1⋅sin φ 

F =   
( ) + Fy1⋅cos φ

 Fx2  fy1 = −Fx1⋅sin φ ( ) 

 Fy2 



X,U same for node 2 

N.B. φ is the angle measured CCW from the structure X to the element x coordinate direction 

if substitute λ = cos φ ( )( )  µ = sin φ 

 fx1   λ µ 0 0   
Fx1   λ µ 0 0    

f = 
 fy1  −µ λ 0 0   

Fy1  
define T f = T⋅F T := 

−µ λ 0 0  
 fx2 


 

= 
 0 0 λ µ 

⋅

 
Fx2 

  0 0 λ µ  
  fy2   0 0 −µ λ   Fy2   0 0 −µ λ  

λ −µ 0 0  


λ −µ 
0 0  

 
TT → µ λ 0 0   λ

2 
+ µ 

2 
λ
2 
+ µ 

2 
 

 0 0 λ −µ    
 

µ λ 
0 0 

 0 0 µ λ  
− 1  λ2 + µ 

2 
λ
2 
+ µ 

2  
T simplify →   

 0 0 
λ −µ  

 λ
2 
+ µ 

2 
λ
2 
+ µ 

2 




 0 0 
µ λ 


 
but ... recall ... λ := cos( )  µ := sin( )  λ

2 
+ µ 

2 
λ
2 
+ µ 

2 
φ φ 

 λ µ 0 0  
λ
2 
+ µ 

2 
simplify → 1 

restating ... 


−µ λ 0 0 T := 
 0 0 λ µ  
 
 0 0 −µ λ  

 cos φ ( )  0 0   cos φ ( )  0 0  
( ) −sin φ ( ) −sin φ 

TT →  sin φ ( )  0 0  − 1 

 sin φ ( )  0 0 

( )  cos φ ( )  cos φ 
 0 0 cos φ ( )  T simplify →

 0 0 cos φ ( )  
( ) −sin φ ( ) −sin φ 

 0 0 sin φ ( )   0 0 sin φ ( ) 
( )  cos φ  ( )  cos φ

this matrix has the special property that the inverse is = to the transpose 
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T

the same transformation relation applies to displacement 
structure element 

 U1   u1    
 V1   v1  

∆ =   δ =   δ = T⋅∆ 
 U2   u2  
 V2  


 v2  

now we have all that is required to determine the stiffness matrix in structure coordinates: 
taking our element stiffness equation and substituting the two transformation equations we just developed: 

f = ke⋅δ f = T⋅F δ = T⋅∆ 

f = T⋅F = ke⋅δ = ke T⋅ ⋅ ⋅ ∆⋅ ∆  => T F  = ke T⋅ 

pre-multiply by T inverse (= T transform) TT⋅T⋅F = F = TT⋅ke⋅ ∆T⋅ 

so our structure stiffness matrix = Ke = TT⋅ke⋅T 

this is the element stiffness in structure coordinates 
 1 0 −1 0   

⋅E or ke := 
A E  

⋅ 
0 0 0 0  Ke := TT⋅ke⋅T 

L −1 0 1 0  
  0 0 0 0  

 ( )2⋅A⋅ E 
cos φ ( ) −cos φ ( )⋅A⋅ E 

⋅sin φ cos φ ( )⋅A⋅ E 
⋅sin φ ( )2⋅A⋅ E 

−cos φ ( )  
 L L L L  
 ( )⋅A⋅ E 

⋅sin φ ( )2⋅A⋅ E 
−cos φ ( ) −sin φ cos φ 

L 
( )  sin φ 

L 
( )⋅A⋅ E 

⋅sin φ ( )2⋅A⋅ E 
L L 

Ke →   
( )2⋅A⋅ E 

−cos φ ( )  cos φ ( )⋅A⋅ E 
⋅sin φ −cos φ ( )⋅A⋅ E 

⋅sin φ ( )2⋅A⋅ E 
cos φ ( )  

 L L L L  
 ( )⋅A⋅ E 

⋅sin φ ( )2⋅A⋅ E 
cos φ ( )  sin φ−cos φ ( ) −sin φ ( )⋅A⋅ E 

⋅sin φ ( )2⋅A⋅ E  

 L L L L  

λ → cos φ ( )( )  µ → sin φ 

 ( )2 cos φ ( )  −cos φ ( )⋅sin φ cos φ ( )⋅sin φ ( )2 −cos φ ( )  

( )⋅sin φ ( )2 −cos φ ( )  −sin φ 
eqn. 5.2.9 in terms of

Ke 
 
cos φ ( )  sin φ ( )⋅sin φ ( )2 

 
cos and sin 

→ 
 A E   

 −cos φ ( )⋅sin φ ( )2 cos φ ( ) 
⋅ ( )2 −cos φ ( )  cos φ ( )⋅sin φ 

 L  
−cos φ ( )  −sin φ ( )⋅sin φ ( )2 ( )⋅sin φ ( )2 cos φ ( )  sin φ 
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we will now address multiple elements in a system demonstrating the process referred to as 

assembly 
to address this we will first approach it using the result from previous ORIGIN := 1 

i = 1 ..... number of nodes (forces, n per node) 
n_elements 

) 
j = 1 ..... number of nodes (displacements, n per node) 

, Ki j  
= ∑ (Keie i j,

ie = 1 (Keie)i j  
= n x n matrix linear elastically connecting force at element 

, node i to displacement node j where 
n = number of dof per node 

Matrix Analysis Example Hughes figure 5.12 page 191 ff 

FYB 

C 
6 

2 
4 

5 

c b
b 

FXB 

A B 3 
1 a 

in this case ... 1 

2 
4 

1 

2 

c 

1 

2 

3 

4 

3 

4 

a 3 

n_elements := 3 n_nodes := 3 

n_free := 2 number of degrees of freedom per node 

n_dof := n_nodes⋅n_free total number of degrees of freedom in structure 

nod_el := 2 nodes per element 

let's define the structure in a matrix listing the nodes associated with each element as follows 

 1 2  
elem :=  1 3 next, let's expand this matrix to the degrees of freedom

 
 2 3  sometimes referred to as the topology matrix or location matrix 

ie := 1 .. n_elements j := 1 .. n_free k := 0 .. n_free − 1 

odd dof k = 1 
even dof k = 0 

topie , n_free⋅ j−k := n_free elemie , j − k  1 2 3 4  
top = 

 
1 2 5 6 

 3 4 5 6  
this says for example, the second degree of freedom in element #2 lines up with the second dof in the 
structure ... 

ie := 2 jj := 2 topie , jj = 2 while the first dof of element 3 lines up with the third dof in the 
structure

ie := 3 jj := 1 topie , jj = 3 

5 notes_33_matrix_grillage_fem_intro.mcd 



Ke3Ke

Ke2Ke

Ke1Ke

c44 b44 a44 

K

now represent each of the three stiffness matrices as follows: 

 a11 a12 a13 a14   b11 b12 b13 b14   c11 c12 c13 c14     
 a21 a22 a23 a24   b21 b22 b23 b24   c21 c22 c23 c24 Ke1 := 
 a31 a32 a33 a34  

Ke2 := 
 b31 b32 b33 b34  

Ke3 := 
 c31 c32 c33 c34  

    a41 a42 a43 a44   b41 b42 b43 b44   c41 c42 c43 c44  

we could develop each expanded stiffness matrix ... 

i := 1 .. nod_el n_free j := 1 .. nod_eln_free 
Ke16 6  

:= 0 , 

ie := 1  a11 a12 a13 a14 0 0  
 a21 a22 a23 a24 0 0

Ke1topie , i , topie , j 
:= (Keie)i j  Ke1 := Ke1 


 
a31 a32 a33 a34 0 0 

 
, 

Ke1 →  a41 a42 a43 a44 0 0  
 0 0 0 0 0 0   
 0 0 0 0 0 0 Ke26 6  

:= 0 , 

ie := 2  b11 b12 0 0 b13 b14  
(Ke2)topie , i , topie , j 

:= (Keie)i j  Ke2 := Ke2 

 
b21 b22 0 0 b23 b24 

, 
 0 0 0 0 0 0 Ke2 →  0 0 0 0 0 0  
 b31 b32 0 0 b33 b34   
 b41 b42 0 0 b43 b44  

Ke36 6  
:= 0 , 

ie := 3  0 0 0 0 0 0  
 0 0 0 0 0 0
  
 0 0 c11 c12 c13 c14 Ke3topie , i , topie , j 

:= (Keie)i j  
Ke3 := Ke3 Ke3 →  0 0 c21 c22 c23 c24 , 

 0 0 c31 c32 c33 c34   
and then add K := Kee1 + Ke2 + Ke3  0 0 c41 c42 c43 c44  

 a11 + b11 a12 + b12 a13 a14 b13 b14  
 a21 + b21 a22 + b22 a23 a24 b23 b24 eqn. at top of page 193
  in text 

K →  a31 a32 a33 + c11 a34 + c12 c13 c14  
 a41 a42 a43 + c21 a44 + c22 c23 c24  
 b31 b32 c31 c32 b33 + c33 b34 + c34   
 b41 b42 c41 c42 b43 + c43 b44 + c44  
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K 

F 

Fii

Ke

c44 b44 a44 

or ... we could just add in the appropriate term according to the topology matrix ... 
redefining the element stiffness matrices ... 

 a11 a12 a13 a14   b11 b12 b13 b14   c11 c12 c13 c14 
  

 a21 a22 a23 a24   b21 b22 b23 b24   c21 c22 c23 c24 
Ke1 := 
 a31 a32 a33 a34  

Ke2 := 
 b31 b32 b33 b34  

Ke3 := 
 c31 c32 c33 c34  

    a41 a42 a43 a44   b41 b42 b43 b44   c41 c42 c43 c44  

iniitialize K ... Kn_dof , n_dof := 0 

ie := 1 .. n_elements Ktopie , i , topie , j 
:= Ktopie , i , topie , j 

+ (Keie)i j, 

 a11 + b11 a12 + b12 a13 a14 b13 b14  eqn. at top of page 193 
 a21 + b21 a22 + b22 a23 a24 b23 b24 in text 
  

K →  a31 a32 a33 + c11 a34 + c12 c13 c14  
 a41 a42 a43 + c21 a44 + c22 c23 c24 

 b31 b32 c31 c32 b33 + c33 b34 + c34 


 b41 b42 c41 c42 b43 + c43 b44 + c44 


ie := 3


this algorithm takes the i,j element in the ie th stiffness matrix (in structure coordinates) and adds it to the 

row and column determined by the ie'th row and i = j 'th column in the global stiffness matrix.


so now we have the Stiffness matrix for the structure (it's singular)

next we apply the boundary conditions ...

this step removes the rows and columns of the constraints from the equations

it is the equivalent of writing the compatibility of displacements equations for the free node in this example


ii := 1 .. n_dof 

∆ ii := ∆ ii 
and only degrees of freedom 3 and 4 are unconstrained 

Fii := Fii therefore the reduced equations become 

 F3  
 F1  



∆1  Fred := submatrix(F, 3, 4, 1, 1) Fred → 


 
F4 

 
 F2  



∆2 
 

 
  

∆ → ∆3  
F → 

 F3 

 


∆4 

 
Kred := submatrix(K, 3, 4, 3, 4) 

 F4  ∆5  


 F5 


 

∆6 

 a33 + c11 a34 + c12  

 
 F6  Kred → 


 
a43 + c21 a44 + c22  
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Fred

∆4 

∆ 

K 

and we can solve for ∆3 and ∆4	 ∆3  − 1
 := Kred ⋅Fred
∆4  

 a44 + c22 
∆3   a33⋅a44 + a33⋅c22 + c11⋅a44 + c11⋅c22 − a34⋅a43 − a34⋅c21 − c12⋅a43 − c12⋅c21 

⋅F3 + 
a33⋅a44 + a33⋅c22


 → 

∆4   −a43 − c21


 a33⋅a44 + a33⋅c22 + c11⋅a44 + c11⋅c22 − a34⋅a43 − a34⋅c21 − c12⋅a43 − c12⋅c21 
⋅F3 + 

a33⋅a44 + a33⋅c22 

 a13⋅∆3 + a14⋅∆4 

∆3  ∆3   


∆ ii := 0  :=  F := K⋅∆  a23⋅∆3 + a24⋅∆4 

∆4  ∆4  (a33 + c11)⋅∆3 + (a34 + c12)⋅∆4


F →  

(a43 + c21)⋅∆3 + (a44 + c22)⋅∆4

 c31⋅∆3 + c32⋅∆4  
  
 c41⋅∆3 + c42⋅∆4  

to obtain the element forces the transformation matrix can be applied to ∆ in structure coordinates to obtain δ 
and then ke used to obtain f from which stress is determined ... 

 1 2 3 4  ie := 1 .. n_elements 
top = 

 
1 2 5 6 

 0 0 ∆3 ∆4 
 3 4 5 6  ∆eie , i := ∆ topie , i ∆e →  0 0 0 0

 
∆3 ∆4 0 0  

δe = Te⋅∆e fe = ke⋅δe σ = Se⋅δe 
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