
Buckling of Stiffened Panels 1
overall buckling vs plate buckling
PCCB Panel Collapse Combined Buckling

Various estimates have been developed to determine the minimum size 
stiffener to insure the plate buckles while the stiffener remains straight. this 
is equivalent to insuring that plate buckling occurs before overall buckling.

 Timoshenko does so by calculating k in  σcr k
π
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⋅:=  and observing the 

value of γ which results in a critical stress above that which will cause plate 
buckling alone.  where;
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Ix is the inertia of the plate with the attached plate associated with individual 
stiffener.

Bleich pg 365, 367, for plates with longitudinal stiffness determines minimum γ  to insure the plate 
buckles before the stiffener (overall buckling). unfortunately Bleich uses different ratios than 
Hughes. Bleich uses B where Hughes uses b.   
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to move to Bleich relationships in Hughes terms (ratios) to match text:
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Fig. 180, Bleich
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A more direct approach is to calculate the overall buckling stress and insure it is larger 
than the plate critical stress. 

The overall buckling stress is the value at which the stiffeners reach critical stress, 
modeling each stiffener as a column of stiffener with attached (portion) of plate with some 
equivalent slenderness ratio.

 λ L_over_ρeq:=      

We will continue to model the plate failure as a gradual failure i.e the center of the plate 
"fails" in buckling while the outer section remains effective at an effective breadth  be 
paradoxically, the column is "stiffer" when the plate flange (be) is reduced for ratios typical 
of ship structure:  let's first evaluate the plate and column critical stresses for a short panel. 
As we assumed in plate buckling (and bending) the width is such that we can model a slice 
independently:

the column is a stiffener with an attached plate of width b
the plate is a width b   some typical scantlings:
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calculate in terms of be, initially be = b
moment of inertia using 8.3.6 to calculate radius of gyration:
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:=   ;  initial value  σe_cr b( ) 49341=

plate critical stress:   σa_cr be( ) 3.615 E⋅
t
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2
⋅:=    initial value  σa_cr b( ) 30125=

things are ok as column > plate => plate "fails" first.  now consider increasing stress 
beyond σa_cr b( ) and plate gradually fails reducing effective breadth. Note that we are using 
an assumption due to von Karman, that the "failed" center region has no compressive 
stress while the outer regions are fully effective at σe defined from force equilibrium as  

σe be( )
σa b⋅

be
:=    now consider what happens to the values of critical stress as effective 

breadth is reduced. the definitions above are still active; repeated here for info: 

be 15 b..:= these values are not "short" but with 
appropriate scantlings the result is the 
same. this set of values assumes 
yield stress is > 3x10^4 or so.
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even though the numbers above represent a long column (plate), the analysis is only 
appropriate for short panels. to analyze long panels a correction is needed to λ = 
L_over_ρ to account for the tendency of the plate to deflect with more than one half sine 
wave making the column slightly stiffer (smaller slenderness ratio λ). Τhe correction is as 
follows:
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this adds a non linearity to the problem so an iterative method is used to make the initial 
comparison of whether the column critical stress is greater than the plate critical stress 
or to solve for the common critical stress. The text proposes an iterative method similar 
to that below for PCCB to determine the common value of critical stress. After doing so 
it is necessary to bring this stress (based on effective breadth) back to applied (average) 
stress; again using statics   

σa b t⋅ Ax+( )⋅     =    σe be t⋅ Ax+( )⋅   and   σa be( )
be t⋅ Ax+( )
b t⋅ Ax+( ) σe_cr be( )⋅:=   at the effective 

breadth that the iteration converges.

Some calculations to validate the column becoming "stiffer" with less effective plate. Think of the location of the 
neutral axis or the radius of gyration as the plate is reduced. With a wide plate flange the neutral axis is close to 
the plate. The radius of gyration which plays in the critical stress varies as follows: (recall larger ρ => larger 
critical stress:
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now for our design rules for PCCB Panel Collapse Combined Buckling:
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t
2

+:= B N 1+( ) b⋅:= Ap b t⋅:=
b t⋅
As

7.53= δx
As

b t⋅
:=

d 5.14= B 75= Ap 12.5= δx 0.13=

parameters that are functions of be

let: be 0.7657 b⋅:= as a place to start and for printing purposes.  Can also use be directly and
compare with br be( ).  If br be( )/ b < start use result until converges.
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Ae be( ) 11.23= C1 be( ) 0.09= Ie be( ) 25.87=
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ρe be( ) 1.52=
γx be( ) 118.07=

for iteration
Cπ 1=
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Cπ a⋅ t⋅

ρe be( ) 3 1 υ
2
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b

0.7657= Checks?? brat
br be( )

b
:= brat 0.766=

br be( ) 19.14=

- PCCB - Panel Collapse Combined Buckling
function of be, graphical approach

b
tp

HSF

a

b input data
ignore numerical 
values shown 
here

input 1:=

stiffener

BSF 3.94:= SDEPTH 5.:= TSF .215:= TSW .17:=

try this with SDEPTH = 6, to see yield effect plate

a 8 12⋅:= b 25:= t .5:=

As 1.66=Af 0.85=Aw 0.81=HSW 4.79=

As Aw Af+:=Af BSF TSF⋅:=Aw SDEPTH TSF−( ) TSW⋅:=HSW SDEPTH TSF−:=
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N 2:=
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assuming iteration complete and matched above.

be 19.14=be brat b⋅:=now obseving intersection:
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for plotting to determine intersection;
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original plateeffective portion of platestiffener & plate as a column 

critical stress relationships: 

7 
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σC

σaxcr
⋅:=

λ
a

π ρe be( )⋅

σY

E
⋅:=

is it slender?? λ>1 ??inputσC 20000−:=γC 1.5:=

partial safety factor

σaxcr 57913−=σecr_pl be( ) 73015−=σecr be( ) 73018−=

σaxcr
be t⋅ As+

b t⋅ As+








σecr be( )⋅:=σecr_pl be( ) 4−

π
2

D⋅

be
2 t⋅

⋅:=σecr be( ) π
2

− E⋅

Cπ L⋅

ρe be( )








2
:=

translation back to applied stresseffective portion of platestiffener & plate as a column 
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