Solution of Plate Bending Equation Uniform Load Simply Supported Free to pull in via sinusoidal loading

loading

$$
\mathrm{p}(\mathrm{x}, \mathrm{y}):=\mathrm{p}_{\mathrm{o}} \cdot \sin \left(\pi \cdot \frac{\mathrm{y}}{\mathrm{a}}\right) \cdot \sin \left(\pi \cdot \frac{\mathrm{x}}{\mathrm{~b}}\right)
$$

■

pxy

$$
\begin{aligned}
& \mathrm{w}=0 \quad \mathrm{~m}_{\mathrm{x}}=\mathrm{m}_{\mathrm{y}}=0 \quad \text { for } \quad \mathrm{x}=0 \quad \mathrm{y}=0 \quad \mathrm{x}=\mathrm{b} \quad \mathrm{y}=\mathrm{a} \\
& \mathrm{~m}_{\mathrm{x}}=\mathrm{m}_{\mathrm{y}}=0 \quad \Rightarrow \quad \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \mathrm{w}=\frac{\mathrm{d}^{2}}{\mathrm{dy}^{2}} \mathrm{w}=0
\end{aligned}
$$

all boundary conditions satisfied if take

$$
\mathrm{w}(\mathrm{x}, \mathrm{y}):=\mathrm{C} \cdot \sin \left(\pi \cdot \frac{\mathrm{y}}{\mathrm{a}}\right) \cdot \sin \left(\pi \cdot \frac{\mathrm{x}}{\mathrm{~b}}\right)
$$

substitute in plate equation:

$$
\begin{array}{r}
\frac{d^{4}}{d x^{4}} w(x, y)+2 \cdot \frac{d^{2}}{d x^{2}} \frac{d^{2}}{d y^{2}} w(x, y)+\frac{d^{4}}{d y^{4}} w(x, y)=\frac{p_{0} \cdot \sin \left(\pi \cdot \frac{y}{a}\right) \cdot \sin \left(\pi \cdot \frac{x}{b}\right)}{D} \\
\frac{d^{4}}{d x} w(x, y)+2 \cdot \frac{d^{2}}{d x^{2}} \frac{d^{2}}{d^{2}}{ }^{2} w(x, y)+\frac{d^{4}}{d y^{4}} w(x, y) \rightarrow 4 \cdot C \cdot \sin (\pi \cdot y) \cdot \sin (\pi \cdot x) \cdot \pi^{4}
\end{array}
$$

after collecting terms:

$$
\begin{aligned}
& \frac{d^{4}}{d x^{4}} w(x, y)+2 \cdot \frac{d^{2}}{d x^{2}} \frac{d^{2}}{d y^{2}} w(x, y)+\frac{d^{4}}{d y^{4}} w(x, y)=C \cdot \sin \left(\pi \cdot \frac{y}{a}\right) \cdot \sin \left(\pi \cdot \frac{x}{b}\right) \cdot\left(\frac{\pi^{4}}{b^{4}}+2 \cdot \frac{\pi^{4}}{a^{2} \cdot b^{2}}+\frac{\pi^{4}}{a^{4}}\right) \\
& \quad=\quad C \cdot \sin \left(\pi \cdot \frac{y}{a}\right) \cdot \sin \left(\pi \cdot \frac{x}{b}\right) \cdot\left(\frac{\pi^{2}}{b^{2}}+\frac{\pi^{2}}{a^{2}}\right)
\end{aligned}
$$

$$
\text { is a solution if } \quad C \cdot \pi^{4} \cdot \sin \left(\pi \cdot \frac{y}{a}\right) \cdot \sin \left(\pi \cdot \frac{x}{b}\right) \cdot\left(\frac{1}{b^{2}}+\frac{1}{a^{2}}\right)^{2}=\frac{p_{0} \cdot \sin \left(\pi \cdot \frac{y}{a}\right) \cdot \sin \left(\pi \cdot \frac{x}{b}\right)}{D}
$$

is a solution if

$$
\begin{gathered}
C \cdot \pi^{4} \cdot\left(\frac{1}{b^{2}}+\frac{1}{a^{2}}\right)^{2}=\frac{p_{0}}{D} \quad \text { or } \ldots . \quad C=\frac{p_{0}}{D \cdot \pi^{4}} \cdot \frac{1}{\left(\frac{1}{b^{2}}+\frac{1}{a^{2}}\right)^{2}} \\
\mathrm{w}(\mathrm{x}, \mathrm{y}):=\frac{p_{0}}{\mathrm{D} \cdot \pi^{4}} \cdot \frac{1}{\left(\frac{1}{b^{2}}+\frac{1}{a^{2}}\right)^{2}} \cdot \sin \left(\pi \cdot \frac{y}{a}\right) \cdot \sin \left(\pi \cdot \frac{x}{b}\right) \quad \begin{array}{l}
\text { is the displacement for a sinusoidal loading in } x \text { and } y \\
\text { moments and stresses are determined from: }
\end{array} \\
m_{x}:=-D \cdot\left[\frac{d^{2}}{d x^{2}} w(x, y)+v\left(\frac{d^{2}}{d y y^{2}} w(x, y)\right)\right] \quad m_{y}:=-D \cdot\left(\frac{d^{2}}{d y^{2}} w(x, y)+v \frac{d^{2}}{d x^{2}} w(x, y)\right)
\end{gathered}
$$

and

$$
\sigma_{\mathrm{x}}:=\frac{\mathrm{m}_{\mathrm{x}}}{\mathrm{I}} \cdot \mathrm{z}_{\max } \quad \mathrm{I}:=\frac{\mathrm{t}^{3}}{12}
$$

$\sigma_{x}:=\frac{m_{x}}{\mathrm{I}} \cdot \frac{\mathrm{t}}{2}$

$$
\sigma_{\mathrm{x}}:=\mathrm{m}_{\mathrm{x}} \cdot \frac{6}{\mathrm{t}^{2}}
$$

this result can first be generalized to:
for a loading of a higher order sinusoidal loading

$$
\mathrm{w}(\mathrm{x}, \mathrm{y}):=\frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{D} \cdot \pi^{4}} \cdot \frac{1}{\left(\frac{n^{2}}{\left.b^{2}+\frac{m^{2}}{a^{2}}\right)} \cdot \sin \left(\mathrm{m} \pi \cdot \frac{\mathrm{y}}{\mathrm{a}}\right) \cdot \sin \left(\mathrm{n} \pi \cdot \frac{\mathrm{x}}{\mathrm{~b}}\right) \quad \mathrm{p}(\mathrm{x}, \mathrm{y}):=\mathrm{p}_{\mathrm{o}} \cdot \sin \left(\mathrm{~m} \pi \cdot \frac{\mathrm{y}}{\mathrm{a}}\right) \cdot \sin \left(\mathrm{n} \pi \cdot \frac{x}{b}\right)\right.}
$$

now consider a uniform load: p_{o}
represent p_{o} in a double fourier series: $\quad p=f(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m n} \cdot \sin \left(\frac{m \cdot \pi \cdot y}{a}\right) \cdot \sin \left(\frac{n \cdot \pi \cdot x}{b}\right)$
coefficients amn can be determined and are: $\quad a_{m n}=\frac{16 \cdot p_{o}}{\pi^{2} \cdot m \cdot n} \quad \begin{aligned} & \text { odd coefficients } \\ & \text { even }=0\end{aligned}$
for example on a square plate with infinity $=20$ i.e. 20 terms in the series: $\quad \mathrm{N} \equiv 20 \quad \mathrm{M} \equiv 20$
\square

eacl pxy

$$
\mathrm{a}_{\mathrm{mn}} \cdot \mathrm{sm}\left(\overline{\mathrm{a}} \int^{\cdot \mathrm{s} \mu}(\overline{\mathrm{~b}})\right.
$$

note here that we are using m , and n odd
the displacement for each loading element

$$
\text { is } \ldots \quad \mathrm{w}(\mathrm{x}, \mathrm{y}):=\frac{1}{\mathrm{D} \cdot \pi^{4}} \cdot \frac{\mathrm{a}_{\mathrm{mn}}}{\left(\frac{n^{2}}{b^{2}}+\frac{m^{2}}{a^{2}}\right)} \cdot \sin \left(\frac{\mathrm{m} \cdot \pi \cdot \mathrm{y}}{\mathrm{a}}\right) \cdot \sin \left(\frac{\mathrm{n} \cdot \pi \cdot x}{\mathrm{~b}}\right)
$$

from above

this result can first be generalized to: for a loading of a higher order sinusoidal loading

$$
\mathrm{w}(\mathrm{x}, \mathrm{y}):=\frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{D} \cdot \pi^{4}} \cdot \frac{1}{\left(\frac{\mathrm{n}^{2}}{\left.b^{2}+\frac{m^{2}}{a^{2}}\right)}\right.} \cdot \sin \left(\mathrm{m} \pi \cdot \frac{\mathrm{y}}{\mathrm{a}}\right) \cdot \sin \left(\mathrm{n} \pi \cdot \frac{\mathrm{x}}{\mathrm{~b}}\right) \quad \mathrm{p}(\mathrm{x}, \mathrm{y}):=\mathrm{p}_{\mathrm{o}} \cdot \sin \left(\mathrm{~m} \pi \cdot \frac{\mathrm{y}}{\mathrm{a}}\right) \cdot \sin \left(\mathrm{n} \pi \cdot \frac{\mathrm{x}}{\mathrm{~b}}\right)
$$

so by superposition of lots of the components of the fourier expansion of p_{o} is ...

$$
\mathrm{w}(\mathrm{x}, \mathrm{y}):=\frac{1}{\pi^{4} \cdot \mathrm{D}} \cdot \sum_{\mathrm{m}=1}^{\infty} \sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{a}_{\mathrm{mn}}}{\left(\frac{m^{2}}{\mathrm{a}^{2}}+\frac{\left.\mathrm{n}^{2}\right)^{2}}{\mathrm{~b}^{2}}\right)} \cdot \sin \left(\frac{\mathrm{m} \cdot \pi \cdot \mathrm{y})}{\mathrm{a}}\right) \cdot \sin \left(\frac{\mathrm{n} \cdot \pi \cdot \mathrm{x}}{\mathrm{~b}}\right) \quad \quad a_{\mathrm{mn}}:=\frac{16 \cdot p_{o}}{\pi^{2} \cdot m \cdot n}
$$

substituting for amn
D

$$
\mathrm{w}(\mathrm{x}, \mathrm{y}):=\sum_{\mathrm{m}=1}^{\infty} \sum_{\mathrm{n}=1}^{\infty} \frac{16 \cdot \mathrm{p}_{\mathrm{o}}}{\pi^{6} \cdot \mathrm{D} \cdot \mathrm{~m} \cdot \mathrm{n} \cdot\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)} \cdot \sin \left(m \cdot \pi \cdot \frac{y}{a}\right) \cdot \sin \left(\mathrm{n} \cdot \pi \cdot \frac{\mathrm{x}}{\mathrm{~b}}\right)
$$

m, n, odd $=>$ substitute $2^{*} \mathrm{~m}-1$ and $2^{*} \mathrm{n}-1$ for m, n
\square

$$
\mathrm{w}(\mathrm{x}, \mathrm{y}):=\sum^{\infty} \sum^{\infty} \frac{16 \cdot \mathrm{p}_{\mathrm{o}}}{2} \cdot \sin \left[(2 \cdot \mathrm{~m}-1) \cdot \pi \cdot \frac{\mathrm{y}}{\mathrm{a}}\right] \cdot \sin \left[(2 \cdot \mathrm{n}-1) \cdot \pi \cdot \frac{\mathrm{x}}{\mathrm{~b}}\right]
$$

$$
\sum_{m=1} \sum_{n=1} \pi^{6} \cdot D \cdot(2 \cdot m-1) \cdot(2 \cdot n-1) \cdot\left[\frac{(2 \cdot m-1)^{2}}{a^{2}}+\frac{(2 \cdot n-1)^{2}}{b^{2}}\right]^{2}
$$

a」 \lfloor
b」
if we want to look at maximum deflection: $x=b / 2 y=a / 2$ expand here
\square
from previous lecture:

$$
m_{x}:=-D \cdot\left[\frac{d^{2}}{d x^{2}} w(x, y)+v\left(\frac{d^{2}}{d y y^{2}} w(x, y)\right)\right] \quad m_{y}:=-D \cdot\left(\frac{d^{2}}{d y^{2}} w(x, y)+v \frac{d^{2}}{d x^{2}} w(x, y)\right)
$$

and we can solve just as above for the single half waves:
plot as a function of a / b i.e. a with $b=1$

$$
\begin{array}{lrl}
\mathrm{a}:=1 . .10 & \mathrm{~b}:=1 & \mathrm{v}:=0.3 \\
\mathrm{M}:=10 & \mathrm{~N}:=10 &
\end{array}
$$

$$
\left.\left.\mathrm{m}_{\mathrm{x} _ \text {po_b_sq }}(\mathrm{a}):=\sum_{\mathrm{m}=1}^{\mathrm{M}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{16}{\pi^{4} \cdot(2 \cdot \mathrm{~m}-1) \cdot(2 \cdot \mathrm{n}-1) \cdot\left[\frac{(2 \cdot \mathrm{~m}-1)^{2}}{\left(\frac{\mathrm{a}}{2}\right)^{2}}+(2 \cdot n-1)^{2}\right]^{2}} \cdot\left[(2 \cdot \mathrm{n}-1)^{2}+v \cdot \frac{(2 \cdot m-1)^{2}}{\left(\frac{a}{b}\right)^{2}}\right] \cdot(-1)^{(m}\right)\right]
$$

$m_{x _p o _b _s q}(10)=0.125$
what length (ratio) is needed to declare a plate long???
see how many terms we need to obtain convergence:
$m_{x _p o _b _s q}(a, M, N):=\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{16}{\pi^{4} \cdot(2 \cdot m-1) \cdot(2 \cdot n-1) \cdot\left[\frac{(2 \cdot m-1)^{2}}{\left(\frac{a}{b}\right)^{2}}+(2 \cdot n-1)^{2}\right]^{2}} \cdot\left[(2 \cdot n-1)^{2}+v \cdot \frac{(2 \cdot m-1)^{2}}{\left(\frac{a}{b}\right)^{2}}\right] \cdot($

$$
M:=1 . .10
$$

the corresponding y direction moment is: v is associated with the m term vs. the n term see above my)

$$
\begin{aligned}
& \mathrm{M}:=10 \mathrm{~N}:=10 \quad \mathrm{~b}:=1 \quad \mathrm{a}:=1 . .10 \quad \mathrm{v}:=0.3 \quad \max \text { at } \mathrm{a} / 2 \mathrm{~b} / 2 \\
& m_{y _p o _b _s q}(a):=\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{16}{\pi^{4} \cdot(2 \cdot m-1) \cdot(2 \cdot n-1) \cdot\left[\frac{(2 \cdot m-1)^{2}}{\left(\frac{a}{b}\right)^{2}}+(2 \cdot n-1)^{2}\right]^{2}} \cdot\left[\left[v \cdot\left[(2 \cdot n-1)^{2}\right]\right]+\frac{(2 \cdot m-1)^{2}}{\left(\frac{a}{b}\right)^{2}}\right] \cdot(- \\
& m_{y _p o _b _s q}(10)=0.037 \\
& \mathrm{~m}_{\mathrm{x} \text { _po_b_sq }}(10,10,10) \cdot v=0.037
\end{aligned}
$$

restating original form of $m x / p o * b^{\wedge} 2$

$$
\left.\mathrm{m}_{\mathrm{x} _ \text {po_b_sq }}(\mathrm{a}):=\sum_{\mathrm{m}=1}^{\mathrm{M}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{16}{\pi^{4} \cdot(2 \cdot \mathrm{~m}-1) \cdot(2 \cdot \mathrm{n}-1) \cdot\left[\frac{(2 \cdot \mathrm{~m}-1)^{2}}{2}+(2 \cdot \mathrm{n}-1)^{2}\right]^{2}} \cdot\left[(2 \cdot \mathrm{n}-1)^{2}+\mathrm{v} \cdot \frac{(2 \cdot \mathrm{~m}-1)^{2}}{\left(\frac{a}{b}\right)^{2}}\right] \cdot(-1)^{(m}\right)
$$

$\left[\left.\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{2}\right|^{L}\right.$
(b) 」

part of figure 9.5 in Hughes
stress is related to the moment as before

$$
\sigma_{\mathrm{x}}:=\frac{\mathrm{m}_{\mathrm{x}}}{\mathrm{I}} \cdot \mathrm{z}_{\max } \quad \mathrm{I}:=\frac{\mathrm{t}^{3}}{12} \quad \sigma_{\mathrm{x}}:=\frac{\mathrm{m}_{\mathrm{x}}}{\mathrm{I}} \cdot \frac{\mathrm{t}}{2} \quad \sigma_{\mathrm{x}}:=\mathrm{m}_{\mathrm{x}} \cdot \frac{6}{\mathrm{t}^{2}}
$$

at maximum mid point: considering:
$\sigma_{\mathrm{x}}=\mathrm{k} \cdot \mathrm{p}_{\mathrm{o}} \cdot\left(\frac{\mathrm{b}}{\mathrm{t}}\right)^{2}$

$$
\frac{\sigma_{\mathrm{x}}}{\left[\mathrm{p}_{\mathrm{o}} \cdot\left(\frac{\mathrm{~b}}{\mathrm{t}}\right)^{2}\right]}=\mathrm{k}
$$

$$
\mathrm{k}=\frac{\mathrm{m}_{\mathrm{x}} \cdot \frac{6}{\mathrm{t}^{2}}}{\left[\mathrm{p}_{\mathrm{o}} \cdot\left(\frac{\mathrm{~b}}{\mathrm{t}}\right)^{2}\right]}=6 \cdot \mathrm{~m}_{\mathrm{x} _ \text {po_ } \mathrm{b}_{-} \mathrm{sq}}
$$

therefore:

$$
\mathrm{k}_{\mathrm{x}}(\mathrm{a}):=6 \cdot \mathrm{~m}_{\mathrm{x} _ \text {po_b_sq}}(\mathrm{a}) \quad \text { similarly } \quad \mathrm{k}_{\mathrm{y}}(\mathrm{a}):=6 \cdot \mathrm{~m}_{\mathrm{y} _ \text {po_b_sq}}(\mathrm{a})
$$

$$
\begin{gathered}
\mathrm{k}_{\mathrm{x}}(10)=0.748 \\
\mathrm{k}_{\mathrm{y}}(10)=0.221 \\
\mathrm{k}_{\mathrm{x}}(10) \cdot v=0.224
\end{gathered}
$$

the clamped situation is considerably more complicated the results are developed in Timoshenko
results are shown in the plot:

N.B. this NOT the same My and ky as for the simply supported case.

In the clamped case, there is an axial stress in the y (long direction) even for a long plate.
The y axis stress is the maximum at the midpoint of the short side ($x=b / 2$ at the edge $y=0$ and $y=a$)
the x axis stress is maximum at the midpoint of the long side ($y=a / 2$ at the edge $x=0$ and $x=b$)
\square
the bottom line plot for simply supported and clamped/clamped plates under uniform pressure is
figure 9.6 Hughes

$M x$ is $\max (k=0.5)$ at $x=a / 2$, i.e. at ends of short side, middle of long side My is $\max (k=0.34)$ at $y=b / 2$, i.e. at ends of long side middle of short side (think of situation in square $=>$ both are $\max (k=\sim 0.3)$ and equal on sides in middle)

