Plate Bending Introduction

review general beam, simply supported, clamped long plate
see: bending with z load sheet for derivations long plate, boundary conditions (end restrained) not so long plate
simply supported beam:
$\mathrm{Q}(\mathrm{x}):=\frac{\mathrm{q} \cdot \mathrm{b}}{2}-\mathrm{q} \cdot \mathrm{x}$

z
$\int_{0}^{\mathrm{x}} \mathrm{Q}(\xi) \mathrm{d} \xi \rightarrow \frac{1}{2} \cdot \mathrm{q} \cdot \mathrm{b} \cdot \mathrm{x}-\frac{1}{2} \cdot \mathrm{q} \cdot \mathrm{x}^{2}$

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{M}(\mathrm{x}) \rightarrow \frac{1}{2} \cdot \mathrm{q} \cdot \mathrm{~b}-\mathrm{q} \cdot \mathrm{x} \quad=0 @ \mathrm{x}=\mathrm{b} / 2
$$

$M(x):=\frac{q \cdot b}{2} \cdot x-q \cdot x \cdot \frac{x}{2} \quad \frac{d}{d x} M(x) \rightarrow \frac{1}{2} \cdot q \cdot b-q \cdot x \quad=0 @ x=b / 2$

$$
\mathrm{M}\left(\frac{\mathrm{~b}}{2}\right) \rightarrow \frac{1}{8} \cdot \mathrm{q} \cdot \mathrm{~b}^{2} \quad \mathrm{M}_{\max }:=\frac{1}{8} \cdot \mathrm{q} \cdot \mathrm{~b}^{2}
$$

$$
\sigma_{\mathrm{x}}:=\frac{\mathrm{M}(\mathrm{x})}{\mathrm{I}} \cdot \mathrm{z}
$$

$$
\text { maximum when } z=t / 2, m(x)=M_{\max }
$$

$$
\sigma_{\mathrm{x}_{-} \max }:=\frac{\mathrm{M}_{\max }}{\mathrm{I}} \cdot \frac{\mathrm{t}}{2}
$$

$$
\sigma_{x_{-} \max }:=\frac{\frac{1}{8} \cdot q \cdot b^{2}}{I} \cdot \frac{t}{2}
$$

$$
\sigma_{\mathrm{x}_{-} \max } \rightarrow \frac{3}{4} \cdot \mathrm{q} \cdot \frac{\mathrm{~b}^{2}}{\mathrm{t}^{2} \cdot \mathrm{a}} \quad \text { + tension other side of load }
$$

clamped beam:

need to use delection $\frac{d^{4}}{d x^{4}}$ w to solve
result:

$$
\mathrm{M}(\mathrm{x}):=-\mathrm{q} \cdot\left(\frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{b} \cdot \mathrm{x}}{2}+\frac{\mathrm{b}^{2}}{12}\right)
$$

Given

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{M}(\mathrm{x})=0 \quad \operatorname{Find}(\mathrm{x}) & \rightarrow \frac{1}{2} \cdot \mathrm{~b} \\
& \mathrm{M}\left(\frac{\mathrm{~b}}{2}\right) \rightarrow \frac{1}{24} \cdot \mathrm{q} \cdot \mathrm{~b}^{2}
\end{aligned}
$$

$M_{\text {max }}=M(x=0, x=b)$
$\sigma_{x_{-} \max }:=\frac{\frac{1}{12} \cdot q \cdot b^{2}}{\mathrm{I}} \cdot \frac{\mathrm{t}}{2}$

$$
\sigma_{\mathrm{x}-\max } \rightarrow \frac{1}{2} \cdot \mathrm{q} \cdot \frac{\mathrm{~b}^{2}}{\mathrm{t}^{2} \cdot \mathrm{a}}
$$

- compression other side of load + tension on load side

long plate:

treating unit length (away
from end effects)

$$
a:=1
$$

section at a simply supported free to pull in

strain in y constrained by adjacent plate anticlastic curvature $R v=1 / v * R$

$$
\varepsilon_{x}:=\frac{\sigma_{x}}{E}-\frac{v \cdot \sigma_{y}}{E} \quad \varepsilon_{y}:=\frac{\sigma_{y}}{E}-\frac{v \cdot \sigma_{x}}{E}=0 \quad \frac{\sigma_{y}}{E}=\frac{v \cdot \sigma_{x}}{E}
$$

$$
\text { substituting }=>\varepsilon_{x}:=\frac{\left(1-v^{2}\right) \cdot \sigma_{x}}{E} \text { or } \ldots \varepsilon_{x}:=\frac{\sigma_{x}}{\frac{E}{\left(1-v^{2}\right)}} \text { or } \ldots \varepsilon_{x}:=\frac{\sigma_{x}}{E^{\prime}} \text { where } E^{\prime}=E /\left(1-v^{\wedge} 2\right)
$$

$$
\text { rearranging }=>\quad \sigma_{x}:=\frac{E \cdot \varepsilon_{x}}{1-v^{2}} \quad \text { as in bending of beam: } \quad \varepsilon_{x}:=-\frac{z}{R} \quad \Rightarrow \quad \sigma_{x}:=-\frac{E}{1-v^{2}} \cdot \frac{z}{R}
$$

$$
\int^{\frac{t}{2}} \quad \int^{\frac{t}{2}} \quad E \cdot z \quad d^{2} \quad E \cdot t^{3} \quad d^{2} \quad M=M_{y}
$$

$$
M:=\int_{\frac{-t}{2}}^{2} \sigma_{x} \cdot z d z \quad M:=-\int_{-t}^{2} \frac{E \cdot z}{1-v^{2}} \cdot \frac{d^{2}}{d x^{2}} w \cdot z d z \quad M:=-\frac{E \cdot t^{3}}{12 \cdot\left(1-v^{2}\right)} \cdot \frac{d^{2}}{d^{2}} w
$$

$$
\text { define: } D:=\frac{E \cdot t^{3}}{12 \cdot\left(1-v^{2}\right)} \quad M:=-D \cdot \frac{d^{2}}{d x^{2}} w
$$

moment relationships are the same: simply supported:

$$
\sigma_{x_{-} \max }:=\frac{\frac{1}{8} \cdot q \cdot b^{2}}{\mathrm{I}} \cdot \frac{\mathrm{t}}{2} \quad \sigma_{\mathrm{x}_{-} \max }:=\frac{3}{4} \cdot \mathrm{q} \cdot \frac{\mathrm{~b}^{2}}{\mathrm{t}^{2}}
$$

Hughes 9.1 .7 is of the form: $\quad \sigma_{x_{-} \max }:=\mathrm{k} \cdot \mathrm{q} \cdot \frac{\mathrm{b}^{2}}{\mathrm{t}^{2}}$
clamped: (figure not shown)
$\sigma_{\mathrm{x}_{-} \max }:=\frac{\frac{1}{12} \cdot \mathrm{q} \cdot \mathrm{b}^{2}}{\mathrm{I}} \cdot \frac{\mathrm{t}}{2} \quad \sigma_{\mathrm{x}_{-} \max }:=\frac{1}{2} \cdot \mathrm{q} \cdot \frac{\mathrm{b}^{2}}{\mathrm{t}^{2}}$
$k=0.75$ simply supported
$\mathrm{k}=0.5$ clamped
N.B. stress is $+\&-$ from bending

