Dissimilar material such as a composite structure:

what if E and I are not constant??
assuming bending only; Mz applied; determine Iz
In this cross section, the upper region has a modulus = E2 where the remainder has modulus E1
as with Euler bending, plane sections remain plane etc....

$$
\begin{array}{cl}
\varepsilon_{\mathrm{X}}=\frac{-\mathrm{y}}{\mathrm{R}} \quad & \varepsilon \text { is axial strain } \\
\mathrm{y} \text { the distance from the neutral }(\mathrm{z}) \text { axis } \\
\mathrm{R} \text { the radius of curvature }
\end{array}
$$

$$
\sigma_{\mathrm{X}}=\mathrm{E} \cdot \varepsilon_{\mathrm{X}}=\frac{-\mathrm{E} \cdot \mathrm{y}}{\mathrm{R}} \quad \begin{aligned}
& \text { Hooke applies (although } \mathrm{E} \text { is now dependent on y) } \\
& \text { signs consistent with Shames } 11.2
\end{aligned}
$$

$$
\text { pure (only) bending }=>\quad F_{x}=\int \sigma_{x} d A=0=-\int \frac{E(y) \cdot y}{R} d A \quad \text { net axial force }=0
$$ suppose we define a parameter Ti such that $\quad T_{i}=\frac{E_{i}}{E_{1}} \quad$ that is, a fraction of a reference modulus E1 then: $\quad-\int \frac{E(y) \cdot y}{R} d A=\frac{-E_{1}}{R} \int T_{i}(y) \cdot y d A$

"transfer" Ti to the area, in such a way that y is not affected $\Rightarrow T_{i}(y) \cdot y \cdot d A=y \cdot\left(T_{i}(y) \cdot d A\right)=y \cdot d y \cdot\left(T_{i}(y) \cdot d z\right)$ which means "transfer" to $d z$, and in rectangular shape, equivalent to applying to z dimension, for thin walled vertical sections that's the thickness. that is over the different moduli:

$$
\int \mathrm{T}_{\mathrm{i}}(\mathrm{y}) \cdot \mathrm{ydA}=\mathrm{T}_{\mathrm{i}} \cdot \mathrm{~b} \cdot \int \mathrm{y} d \mathrm{~d}
$$

in a horizontal thin walled section, y ~ constant => can still apply to thickness:

$\int T_{i}(y) \cdot y d A=0 \quad=>N A$ is at the $c g$ of the transformed section
now continue looking at the bending moment:
$M_{z}=-\int \sigma_{x} \cdot y d A=\frac{-1}{R} \cdot \int E(y) \cdot y^{2} d A=\frac{-E_{1}}{R} \cdot \int T_{i} \cdot y^{2} d A \quad$ using the relation defined above define $\quad I_{Z_{-} t r}=\int T_{i} \cdot y^{2} d A \quad \Rightarrow \quad \frac{1}{R}=\frac{M_{Z^{\prime}}}{E_{1} \cdot I_{Z_{-} \text {tr }}} \quad \begin{aligned} & \text { and again we can apply } T i \text { to the } z \text { dimension in } \\ & \text { vertical sections and to the } y \text { in horizontal }\end{aligned}$
$\varepsilon_{X}=\frac{-y}{R} \quad \sigma_{x}=E \cdot \varepsilon_{X}=\frac{-E(y) \cdot y}{R}=-E(y) \cdot \frac{M_{z}}{E_{1} \cdot I_{Z_{-}} \cdot t r} \cdot y \quad$ where we have written $E(y)$ as it varies
$T_{i}=\frac{E_{i}}{E_{1}} \quad \sigma_{x}=-E \cdot(y) \cdot \frac{M_{z}}{E_{1} \cdot I_{z_{-}} \text {tr }} \cdot y=-T_{i} \cdot(y) \cdot E_{1} \cdot \frac{M_{Z}}{E_{1} \cdot I_{Z_{-}} \text {tr }} \cdot y=-T_{i} \cdot(y) \cdot \frac{M_{Z}}{I_{z_{-}} \text {tr }} \cdot y$
assume for plot like text $\quad \mathrm{R}:=-1$
$\varepsilon_{\mathrm{X}}(\mathrm{y}):=\frac{-\mathrm{y}}{\mathrm{R}}$

(plane sections remain plane)
to evaluate stress
at yi (where modulus changes, substitute $E(y)=T i * E 1=>$
$\mathrm{I}_{\mathrm{Z}_{-} \mathrm{tr}}:=1$
$M_{Z}:=-1$
$i:=0 . .1 \quad y:=0,0.01 . .1$

$$
\mathrm{yy}:=\left(\begin{array}{c}
0 \\
0.7 \\
1.0
\end{array}\right) \quad \mathrm{TT}:=\binom{1}{0.5}
$$

$\mathrm{T}_{\mathrm{i}}(\mathrm{y}):=\sum_{\mathrm{i}} \mathrm{TT}_{\mathrm{i}} \cdot\left(\mathrm{yy}_{\mathrm{i}}<\mathrm{y} \leq \mathrm{yy}_{\mathrm{i}+1}\right) \quad \begin{aligned} & \text { summation is to superpose the values appropriate to the }(\mathrm{y}) \\ & \text { dependence }\end{aligned}$
$\sigma_{\mathrm{x}}(\mathrm{y}):=-\mathrm{T}_{\mathrm{i}}(\mathrm{y}) \cdot \frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{I}_{\mathrm{z}_{-} \operatorname{tr}}} \cdot \mathrm{y} \quad \quad \sigma_{-} \mathrm{ref}(\mathrm{y}):=-\mathrm{TT}_{1} \cdot \frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{I}_{\mathrm{z}_{-} \operatorname{tr}}} \cdot \mathrm{y}$
hence the stress variation is

$$
\mathrm{x}:=0 . .10 \quad \mathrm{v}(\mathrm{x}):=1 \quad \mathrm{E}:=1 \quad \mathrm{I}:=1 \quad \text { constant }:=0 \quad \mathrm{z}:=0 . .10
$$

$$
\begin{gathered}
\mathrm{I}_{\mathrm{n}}:=1 \quad \begin{array}{l}
\mathrm{n}:=1 . .2 \quad \mathrm{~d}_{\mathrm{g}}:=1 \quad \mathrm{~A}_{\mathrm{n}}:=1 \quad \mathrm{i}_{0}:=1 \\
\mathrm{~d}_{\mathrm{n}}:=1 \\
\mathrm{n}:=1 . .2
\end{array} \\
\mathrm{t}:=1
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{V}(\mathrm{x}):=1 \quad \mathrm{~N}_{0}:=0 \\
& \sigma_{\mathrm{z}}:=6 \quad \tau_{\mathrm{xz}}:=1 \\
& \tau_{\mathrm{yz}}:=4 \\
& \sigma_{1}:=1 \quad \tau_{\mathrm{xy}}:=1 \quad \sigma_{2}:=2 \quad \sigma_{3}:=3 \quad \sigma_{\mathrm{y}}:=5 \quad \sigma_{\mathrm{Y}}:=4 \quad \sigma_{\mathrm{x}}:=2
\end{aligned}
$$

