Shear Stress from Shear Load in closed non symmetric section

Shear load is applied such that (pure) bending occurs can't use symmetry to determine where to start s=0 arc length parameter approach: divide into two problems and superpose:

q^{*} is the shear flow we have developed to date opening the section and $q 1$ is a constant shear flow in the closed section
superposition => we add the two flows for the actual shear flow how do we calculate each. i.e $q=q^{*}+q 1$

We have one condition; the net has to match the applied load the second comes from the physical situation; the slip at the cut must be 0

$$
\begin{aligned}
& \text { slip }=\int \gamma \mathrm{ds} \quad \text { where integral is circular and } \gamma \text { is the shear strain } \\
& \int \gamma \mathrm{ds}=\int \frac{\tau}{\mathrm{G}} \mathrm{ds}=\frac{1}{\mathrm{G}} \cdot \int \frac{\mathrm{q}}{\mathrm{t}} \mathrm{ds}=0 \quad \text { G the shear modulus }=\text { constant }=> \\
& \int \frac{q_{2} s t a r}{t} d s+\int \frac{q_{1}}{t} d s=0 \quad q_{1} \quad \text { is constant }=> \\
& \mathrm{q}_{1}:=\frac{-\int_{0}^{\mathrm{b}} \frac{\mathrm{q}_{-} \operatorname{star}(\mathrm{s})}{\mathrm{t}(\mathrm{~s})} \mathrm{ds}}{\int \frac{1}{\mathrm{t}(\mathrm{~s})} \mathrm{ds}} \\
& \text { where the numerator is the integral around the cross } \\
& \text { section and the denominator is as well (circular) } \\
& q _\operatorname{star}(\mathrm{s}):=\frac{\mathrm{Q}}{\mathrm{I}} \cdot \mathrm{~m}_{-} \operatorname{star}(\mathrm{s}) \text { and } \int_{0}^{\mathrm{b}} \frac{q_{_} \operatorname{star}(\mathrm{s})}{\mathrm{t}(\mathrm{~s})} \mathrm{ds}=\frac{\mathrm{Q}}{\mathrm{I}} \cdot \int_{0}^{\mathrm{b}} \frac{\mathrm{~m}_{-} \operatorname{star}(\mathrm{s})}{\mathrm{t}(\mathrm{~s})} \mathrm{ds} \\
& \text { in this case the example is } \\
& \text { symmetric wrt } z \text { axis lyz }=0 \text { would } \\
& \text { need to account for assymmetry } \\
& \text { as above if necessary } \\
& q(s)=\frac{Q}{I} \cdot\left(m_{-} \operatorname{star}(s)-\frac{\int_{0}^{b} \frac{m_{-} \operatorname{star}(s)}{t(s)} d s}{\int \frac{1}{t(s)} d s}\right)
\end{aligned}
$$

Example of closed rectangular cross section non-symmetric subject to shear force

$$
\begin{aligned}
& \mathrm{b}:=10 \quad \mathrm{dd}:=8 \\
& \mathrm{Q}:=100 \\
& \mathrm{t}_{1}=1 \quad \mathrm{t}_{2}=\frac{3}{2} \\
& \mathrm{t}_{\mathrm{d}}:=\mathrm{t}_{1} \quad \mathrm{t}_{\mathrm{s}}:=\mathrm{t}_{1} \quad \mathrm{n}_{-} \text {elements }:=4 \\
& \mathrm{t}_{\mathrm{b}}:=\mathrm{t}_{1} \quad \mathrm{t}_{1 \mathrm{~s}}:=\mathrm{t}_{2} \\
& \mathrm{n}:=0 . . \mathrm{n} \text { _elements }-1 \quad \text { index } 0 \mathrm{mcd} \\
& \mathrm{n}:=0 \text {.. n_elements - } 1 \quad \text { index } 0 \mathrm{mcd} \\
& \text { reference baseline, } h \text { is distance between NA and } \\
& \text { lower segment; } \mathrm{g}=\mathrm{dd}-\mathrm{h} \text { is distance to top } \\
& \text { segment } \\
& A:=\left(\begin{array}{c}
t_{d} \cdot b \\
t_{s} \cdot d d \\
t_{b} \cdot b \\
t_{l s} \cdot d d
\end{array}\right) \quad \text { A_total }:=\sum_{n} A_{n} \quad \text { A_total }=40 \quad d:=\left(\begin{array}{c}
d d \\
\frac{d d}{2} \\
0 \\
\frac{d d}{2}
\end{array}\right) \\
& h:=\frac{\sum_{n}\left(d_{n} \cdot A_{n}\right)}{A_{-} \text {total }} \\
& \mathrm{h}=4 \\
& i_{0}:=\left(\begin{array}{c}
\frac{1}{12} \cdot \mathrm{t}^{3} \cdot \mathrm{~b} \\
\frac{1}{12} \cdot \mathrm{dd}^{3} \cdot \mathrm{t}_{\mathrm{s}} \\
1 \\
1
\end{array}\right) \quad \mathrm{A}=\left(\begin{array}{c}
10 \\
8 \\
10
\end{array}\right) \\
& d=\left(\begin{array}{l}
8 \\
4 \\
0 \\
4
\end{array}\right) \\
& \mathrm{g}:=\mathrm{dd}-\mathrm{h} \\
& \mathrm{~d}_{\mathrm{g}}:=\mathrm{h} \\
& I:=\left[\sum_{n}\left[\mathrm{i}_{0_{n}}+A_{n} \cdot\left(d_{n}\right)^{2}\right]-A_{-} \text {total } \cdot d_{g}^{2}\right] \quad I=\frac{1285}{3} \quad \text { removed } 2 \text { as this is not half section } \\
& \text { deck (top) } \\
& \mathrm{m}_{\mathrm{y}_{-} \text {top }}(\mathrm{s}):=\mathrm{g} \cdot \mathrm{t}_{\mathrm{d}} \cdot \mathrm{~s} \cdot(0<\mathrm{s} \leq \mathrm{b}) \\
& 0<\mathrm{s} \leq \mathrm{b}
\end{aligned}
$$

right side
$\mathrm{m}_{\mathrm{y}_{-} \operatorname{side}}(\mathrm{s}):=\left[\mathrm{g} \cdot \mathrm{t}_{\mathrm{d}} \cdot \mathrm{b}+\mathrm{t}_{\mathrm{s}} \cdot\left(\mathrm{g} \cdot \mathrm{s}-\mathrm{g} \cdot \mathrm{b}-\frac{1}{2} \cdot \mathrm{~s}^{2}+\mathrm{s} \cdot \mathrm{b}-\frac{1}{2} \cdot \mathrm{~b}^{2}\right)\right] \cdot[[\mathrm{b}<\mathrm{s} \leq(\mathrm{b}+\mathrm{g}+\mathrm{h})]] \quad[\mathrm{b}<\mathrm{s} \leq(\mathrm{b}+\mathrm{g}+\mathrm{h})]$
$\mathrm{m}_{\mathrm{ybgh}}:=\mathrm{g} \cdot \mathrm{t}_{\mathrm{d}} \cdot \mathrm{b}+\mathrm{t}_{\mathrm{s}} \cdot\left[\mathrm{g} \cdot(\mathrm{b}+\mathrm{g}+\mathrm{h})-\mathrm{g} \cdot \mathrm{b}-\frac{1}{2} \cdot(\mathrm{~b}+\mathrm{g}+\mathrm{h})^{2}+(\mathrm{b}+\mathrm{g}+\mathrm{h}) \cdot \mathrm{b}-\frac{1}{2} \cdot \mathrm{~b}^{2}\right]$
bottom
$\mathrm{m}_{\mathrm{y}_{\text {_bottom }}}(\mathrm{s}):=\left[\mathrm{m}_{\mathrm{ybgh}}-\mathrm{h} \cdot \mathrm{t}_{\mathrm{b}} \cdot(\mathrm{s}-\mathrm{b}-\mathrm{g}-\mathrm{h})\right] \cdot[\mathrm{b}+\mathrm{g}+\mathrm{h}<\mathrm{s} \leq(2 \cdot \mathrm{~b}+\mathrm{g}+\mathrm{h})]$

$$
[\mathrm{b}+\mathrm{g}+\mathrm{h}<\mathrm{s} \leq(2 \cdot \mathrm{~b}+\mathrm{g}+\mathrm{h})]
$$

left side
same for as right side with s starting at 2* $b+d d$, with initial value $m y\left(2^{*} b+d d\right)$
$\mathrm{m}_{\mathrm{y}}(\mathrm{s})=\int_{0}^{s} \mathrm{y} \cdot \mathrm{tds}$
$m_{y}(s)=\int_{0}^{2 \cdot b+d d} y \cdot t d s+\int_{2 \cdot b+d d}^{s} y \cdot t d s=m_{y}(2 \cdot b+d d)+t_{s}\left[\int_{2 \cdot b+d d}^{s}-h+[s-(2 \cdot b+d d)] d s\right]$
using II for 2*b $+d d$
$[2 \cdot \mathrm{~b}+\mathrm{dd}<\mathrm{s} \leq(2 \cdot \mathrm{~b}+2 \mathrm{dd})]$
$\int_{11}^{\mathrm{s}}-\mathrm{h}+(\sigma-11) \mathrm{d} \sigma \rightarrow$
$\mathrm{m}_{\mathrm{y}}(2 \cdot \mathrm{~b}+\mathrm{dd})=\mathrm{m}_{\mathrm{y}_{\text {_ottom }}}(2 \cdot \mathrm{~b}+\mathrm{dd}) \quad \quad \mathrm{m}_{\mathrm{y}_{-} \text {bottom }}(2 \cdot \mathrm{~b}+\mathrm{dd})=0$

$$
11:=2 \cdot b+d d
$$

$m_{y_{-}}$left_side $(s):=\left[m_{y_{-}}\right.$bottom $\left.(2 \cdot b+d d)+t_{s} \cdot\left(-4 \cdot s+\frac{1}{2} \cdot s^{2}-11 \cdot s+4 \cdot 11+\frac{1}{2} \cdot 11^{2}\right)\right] \cdot[[2 \cdot b+d d<s \leq(2 \cdot b+2 d d)]]$

$$
\mathrm{s}:=0,0.1 . . \mathrm{b}+\mathrm{dd}+\mathrm{b}+\mathrm{dd}
$$

$$
\mathrm{m}_{\mathrm{y}}(\mathrm{~s}):=\mathrm{m}_{\mathrm{y}_{-} \text {top }}(\mathrm{s})+\mathrm{m}_{\mathrm{y}_{-} \text {side }}(\mathrm{s})+\mathrm{m}_{\mathrm{y} _ \text {bottom }}(\mathrm{s})+\mathrm{m}_{\mathrm{y}_{-} \text {left_side }}(\mathrm{s})
$$

need also t (s)

$$
\mathrm{t} _ \text {top }(\mathrm{s}):=\mathrm{t}_{\mathrm{d}} \cdot(0 \leq \mathrm{s} \leq \mathrm{b}) \quad \mathrm{t} _\operatorname{side}(\mathrm{s}):=\mathrm{t}_{\mathrm{s}} \cdot[\mathrm{~b}<\mathrm{s} \leq(\mathrm{b}+\mathrm{g}+\mathrm{h})]
$$

$$
\left.\mathrm{t} \text { _bottom }(\mathrm{s}):=\mathrm{t}_{\mathrm{b}} \cdot(\mathrm{~b}+\mathrm{g}+\mathrm{h}<\mathrm{s}<2 \cdot \mathrm{~b}+\mathrm{g}+\mathrm{h}) \quad \mathrm{t} \text { left_side(} \mathrm{s}\right):=\mathrm{t}_{\mathrm{ls}} \cdot[2 \cdot \mathrm{~b}+\mathrm{dd} \leq \mathrm{s} \leq(2 \cdot \mathrm{~b}+2 \mathrm{dd})]
$$

$$
\mathrm{t}(\mathrm{~s}):=\mathrm{t} _ \text {top(s) }+\mathrm{t} \text { _side(s) }+\mathrm{t} \text { _bottom }(\mathrm{s})+\mathrm{t} \text { left_side(s) }
$$

$$
\mathrm{Q}=100 \quad \mathrm{q}(\mathrm{~s}):=\frac{\mathrm{Q} \cdot \mathrm{~m}_{\mathrm{y}}(\mathrm{~s})}{\mathrm{I}} \quad \tau(\mathrm{~s}):=\frac{\mathrm{Q} \cdot \mathrm{~m}_{\mathrm{y}}(\mathrm{~s})}{\mathrm{I} \cdot \mathrm{t}(\mathrm{~s})}
$$

plot of stress distribution around cross section for q_star magnitudes shown positive is out of section
this is shear stress

$\mathrm{m}_{-} \operatorname{star}(\mathrm{s}):=\mathrm{m}_{\mathrm{y}}(\mathrm{s})$

$$
\mathrm{q}_{1}:=\frac{\int_{0}^{2 \cdot \mathrm{~b}+2 \cdot \mathrm{dd}} \frac{\mathrm{~m}_{-} \operatorname{star}(\mathrm{s})}{\mathrm{t}(\mathrm{~s})} \mathrm{ds}}{\int_{0}^{2 \cdot \mathrm{~b}+2 \cdot \mathrm{dd}} \frac{1}{\mathrm{t}(\mathrm{~s})} \mathrm{ds}} \quad \mathrm{q}_{1}=\frac{55613827}{2524920}
$$

$$
\mathrm{q}(\mathrm{~s}):=\frac{\mathrm{Q}}{\mathrm{I}} \cdot\left(\mathrm{~m}_{-} \operatorname{star}(\mathrm{s})-\mathrm{q}_{1}\right)
$$

$$
\tau(\mathrm{s}):=\frac{\mathrm{q}(\mathrm{~s})}{\mathrm{t}(\mathrm{~s})}
$$

■
plot of stress distribution around cross section

$$
t_{1} \equiv 1.0 \quad t_{2} \equiv 1.5
$$ magnitudes shown positive outward this is shear stress

now that we have considered on such cross section, what if there are one or more adjacent?

