Lecture 6-2003

Torsion Properties for Line Segments and Computational Scheme for Piecewise Straight Section Calculations

this consists of four parts (and how we will treat each)
A - derivation of geometric algorithms for section properties (cover quickly for sense of approach)
B - derivation of first moment approach (for info - not covered)
C - computational routine resulting from A (demo a few examples - routine available in lab)
D - computational routine resulting from B (routine available in lab)
sourced from section 6.1 to 6.3 of Kollbrunner, Curt Friedrich, Torsion in structures; an engineering approach TA417.7.T6.K811 1966, and geometry.
starting point: a line defined by two points, $\mathrm{x} 1, \mathrm{y} 1$ and $\mathrm{x} 0, \mathrm{y} 0$
$\frac{y-y_{0}}{x-x_{0}}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \quad$ line passing through two points
$y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+y_{0}-x_{0} \frac{\left(y_{1}-y_{0}\right)}{\left(x_{1}-x_{0}\right)} O r \ldots \quad x=\frac{x_{1}-x_{0}}{y_{1}-y_{0}} \cdot y+x_{0}-y_{0} \cdot \frac{x_{1}-x_{0}}{y_{1}-y_{0}}$
consider calculation of increment of moment of inertia (relative to centroid)

$$
\begin{aligned}
& \int_{0}^{b} y^{2} \cdot t d s \quad d s=\frac{d x}{\cos (\alpha)} \quad \Delta s=\text { length }=\frac{\Delta x}{\cos (\alpha)} \int_{0}^{b} y^{2} \cdot t d s=\frac{t}{\cos (\alpha)} \cdot \int_{x_{0}}^{x_{1}} y^{2} d x \\
& \int_{x_{0}}^{x_{1}}\left[\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+y_{0}-x_{0} \cdot\left(\frac{\left.y_{1}-y_{0}\right)}{\left.x_{1}-x_{0}\right)}\right]^{2} d x \left\lvert\, \begin{array}{l}
\text { simplify } \\
\text { factor }
\end{array} \rightarrow \frac{1}{3} \cdot\left(y_{0}^{2}+y_{1} \cdot y_{0}+y_{1}^{2}\right) \cdot\left(x_{1}-x_{0}\right)\right.\right. \\
& \int_{0}^{b} y^{2} \cdot t d s=\frac{t}{\cos (\alpha)} \cdot \int_{x_{0}}^{x_{1}} y^{2} d x=\frac{t}{\cos (\alpha)} \cdot\left[\frac{\left(x_{1}-x_{0}\right)}{3} \cdot\left[\left(y_{1}\right)^{2}+y_{0} \cdot y_{1}+\left(y_{0}\right)^{2}\right]\right] \\
& I_{x}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{3} \cdot\left[\left(y_{1}\right)^{2}+y_{0} \cdot y_{1}+\left(y_{0}\right)^{2}\right]
\end{aligned}
$$

similarly (by the symmetry of the expression for the line above):

$$
I_{y}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{3} \cdot\left[\left(x_{1}\right)^{2}+x_{0} \cdot x_{1}+\left(x_{0}\right)^{2}\right]
$$

cross moment of inertia

$$
I_{x y}=\int_{0}^{b} x \cdot y \cdot t d s=\frac{t}{\cos (\alpha)} \cdot \int_{x_{0}}^{x_{1}} x \cdot y d x=\frac{t}{\sin (\alpha)} \cdot \int_{y_{0}}^{y_{1}} x \cdot y d y
$$

$$
\begin{aligned}
& \int_{x_{0}}^{x_{1}} x \cdot y d x=\int_{x_{0}}^{x_{1}}\left[\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+y_{0}-x_{0} \cdot\left(\frac{\left.y_{1}-y_{0}\right)}{x_{1}-x_{0}}\right)\right] \cdot x d x \\
& \int_{x_{0}}^{x_{1}}\left[\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+y_{0}-x_{0} \cdot\left(\frac{\left.y_{1}-y_{0}\right)}{\left.x_{1}-x_{0}\right)}\right] \cdot x d x \left\lvert\, \begin{array}{l}
\text { simplify } \\
\text { factor }
\end{array} \rightarrow \frac{1}{6} \cdot\left(x_{1}-x_{0}\right) \cdot\left(2 \cdot x_{1} \cdot y_{1}+y_{0} \cdot x_{1}+x_{0} \cdot y_{1}+2 \cdot y_{0} \cdot x_{0}\right)\right.\right. \\
& I_{x y}=\frac{t}{\cos (\alpha)} \cdot \int_{x_{0}}^{x_{1}} x \cdot y \text { dx }=\frac{t}{6} \cdot\left(\frac{x_{1}-x_{0}}{\cos (\alpha)}\right) \cdot\left[2 \cdot\left(x_{1} \cdot y_{1}+x_{0} \cdot y_{0}\right)+x_{0} \cdot y_{1}+x_{1} \cdot y_{0}\right]=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[\left[\begin{array}{l}
2 \cdot\left(x_{1} \cdot y_{1}+x_{0} \cdot y_{0}\right) \ldots \\
+x_{0} \cdot y_{1}+x_{1} \cdot y_{0}
\end{array}\right]\right] \\
& \text { we could calculate lyx using the same relationship but we know it is }=I_{x y} \quad I_{y x}=I_{x y}
\end{aligned}
$$

to evaluate the warping relationships: start with line passing through two points and obtain normal form of line

$$
\frac{y-y_{0}}{x-x_{0}}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \quad \text { or } \ldots \quad y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+y_{0}-x_{0} \frac{\left(y_{1}-y_{0}\right)}{\left(x_{1}-x_{0}\right)}
$$

multiply by (x1-x0)

$$
\mathrm{y} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right) \cdot \mathrm{x}+\mathrm{y}_{0} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)-\mathrm{x}_{0}\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)
$$

$$
\text { rearrange } \Rightarrow>\quad-\left(y_{1}-y_{0}\right) \cdot x+\left(x_{1}-x_{0}\right) \cdot y+x_{0} \cdot\left(y_{1}-y_{0}\right)-y_{0} \cdot\left(x_{1}-x_{0}\right)=0
$$

$$
A=-\left(y_{1}-y_{0}\right) \quad B=x_{1}-x_{0} \quad C=x_{0} \cdot\left(y_{1}-y_{0}\right)-y_{0} \cdot\left(x_{1}-x_{0}\right)
$$

general form:

$$
A \cdot x+B \cdot y+C=0
$$

to reduce to normal form $x^{*} \cos (\beta)+y^{*} \sin (\beta)=p$ divide by $\sqrt{\left(y_{1}-y_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}}$ where sign is opposite of $C . \quad C \neq 0$ and β is angle between the x axis and the NORMAL to line.

$$
\begin{aligned}
& \text { denom }=\sqrt{\left(y_{1}-y_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2} \quad \text { denom }=- \text { denom } \cdot \operatorname{sign}(C)} \begin{array}{l}
\text { for the geometry shown: } x 0>x 1, y 1>y 0 \\
\sin (\beta)=\frac{-\left(x_{1}-x_{0}\right)}{\text { denom }} \quad \cos (\beta)=\frac{y_{1}-y_{0}}{\operatorname{denom}} \\
A \cdot x+B \cdot y+C=0 \quad \text { becomes } \quad-A \cdot x-B \cdot y=C \\
\frac{y_{1}-y_{0}}{\operatorname{denom} \cdot x+\frac{\left(x_{1}-x_{0}\right)}{\operatorname{denom}} \cdot y=\frac{C}{\operatorname{denom}} \quad \rho_{c}=\frac{C}{\operatorname{denom}}} \\
x \cdot \cos (\beta)+y \cdot \sin (\beta)=\rho_{c} \quad
\end{array}
\end{aligned}
$$

we could also have determined this direct from the geometry x, y is a point on a line a distance hc from the centroid:

$$
x \cdot \cos (\beta)+y \cdot \sin (\beta)=h_{c}
$$

$$
\mathrm{d} \omega_{\mathrm{c}}=\mathrm{d} \Omega_{\mathrm{c}}=\rho_{\mathrm{c}} \cdot \mathrm{ds} \quad \text { definition of } \quad \omega_{\mathrm{c}}=\int \mathrm{h}_{\mathrm{c}} \mathrm{ds}
$$

for a straight line segment $\rho_{c}=$ constant $\quad \Delta \omega_{c}=\rho_{c} \cdot L \quad$ and is linear along line

$$
\rho_{\mathrm{c}}=\mathrm{p} \text { from normal form of line }
$$

ρ_{c} is positive if centroid is to the left when viewing the element from i to j (0 to 1) along
the tangent line
alternative form of line $(\cos (\alpha), \sin (\alpha)$ and p defined in terms of $\mathrm{x} 1, \mathrm{y} 1$
$x 0, y 0$ above in this form p is the distance from origin to line and β is
angle NORMAL to line makes with x axis

$$
x \cdot \cos (\beta)+y \cdot \sin (\beta)=\rho_{c}=h_{c}
$$

the increase in ωc due to this line segment is then
$\Delta \omega_{c}=\rho_{c} \cdot L=\int_{s_{0}}^{s_{1}} h_{c} d s=\int_{s_{0}}^{s_{1}} x \cdot \cos (\beta) d s+\int_{s_{0}}^{s_{1}} y \cdot \sin (\beta) d s=\int_{y_{0}}^{y_{1}} x d y-\int_{x_{0}}^{x_{1}} y d x$

"it can be shown"

$$
\int_{s_{0}}^{s_{1}} h_{c} d s=\int_{y_{0}}^{y_{1}} x d y-\int_{x_{0}}^{x_{1}} y d x=\left(\frac{x_{1}+x_{0}}{2}\right) \cdot\left(y_{1}-y_{0}\right)-\frac{\left(y_{1}+y_{0}\right)}{2} \cdot\left(x_{1}-x_{0}\right)
$$

\square
$\Delta \omega_{c}=\frac{\mathrm{x}_{1}+\mathrm{x}_{0}}{2} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)-\frac{\mathrm{y}_{1}+\mathrm{y}_{0}}{2} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)$
$\Delta \omega_{c}=x m \cdot(\Delta y)-y m \cdot \Delta x$

$$
\begin{aligned}
& x m=\text { mid-point } \\
& \Delta x=x 1-x 0 \\
& \Delta y=y 1-y 0
\end{aligned}
$$

$I_{x \omega c}=\int_{0}^{b} \omega_{c} \cdot y d s \quad I_{y \omega c}=\int_{0}^{b} \omega_{c} \cdot x d s$
ω_{c} is linear with s for a line h_{c} is constant $=>\omega_{c}=\int h_{c} d s=h_{c} \cdot \int 1 d s=h_{c} \cdot s$
initial value is $\omega 0$ and end value $\omega 1$
being linear with s also implies linear with x and y i.e.
with x

$$
\omega_{c}(s)=\omega_{c 0}+\left(\omega_{c 1}-\omega_{c 0}\right) \frac{\left(x-x_{0}\right)}{x_{1}-x_{0}}=\left(\frac{\left.\omega_{c 1}-\omega_{c 0}\right)}{x_{1}-x_{0}}\right){ }_{x}+\omega_{c 0}-\omega_{c 0} \frac{\left(x-x_{0}\right)}{x_{1}-x_{0}}
$$

which is exactly like
with y substituted for ω

$$
y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+y_{0}-x_{0} \frac{\left(y_{1}-y_{0}\right)}{\left(x_{1}-x_{0}\right)}
$$

so $\ldots .$. just as $\quad I_{x y}=\int_{0}^{b} x \cdot y d A \quad \quad I_{x y}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[2 \cdot\left(x_{1} \cdot y_{1}+x_{0} \cdot y_{0}\right)+x_{0} \cdot y_{1}+x_{1} \cdot y_{0}\right]$
$I_{y \omega c}=\int_{0}^{b} \omega_{c} \cdot x d s=\int_{0}^{b}\left[\left(\frac{\left.\omega_{c 1}-\omega_{c 0}\right)}{x_{1}-x_{0}} \cdot x+\omega_{c 0}-\omega_{c 0} \cdot \frac{\left(x-x_{0}\right)}{x_{1}-x_{0}}\right] \cdot x d s\right.$
$I_{y \omega c}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[2 \cdot\left(x_{1} \cdot \omega c_{1}+x_{0} \cdot \omega c_{0}\right)+x_{0} \cdot \omega c_{1}+x_{1} \cdot \omega c_{0}\right]$
and $\ldots . . \quad I_{x \omega c}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[2 \cdot\left(y_{1} \cdot \omega_{c 1}+y_{0} \cdot \omega c_{0}\right)+y_{0} \cdot \omega c_{1}+y_{1} \cdot \omega c_{0}\right]$
now we can locate the shear center: (assume for the time being that these values are the results for a more complete section - we'll tie this together later)
from previous lecture

$$
\mathrm{y}_{\mathrm{D}}:=\frac{\left(\mathrm{I}_{\mathrm{y} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{I}_{\mathrm{z} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}}^{2}\right)}
$$

$$
\mathrm{z}_{\mathrm{D}}:=\frac{\left(-\mathrm{I}_{\mathrm{z} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{y}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}}^{2}\right)}
$$

the coordinate system is changed from y, z to x, y changing y to x (first) and then z to y

$$
\mathrm{x}_{\mathrm{D}}:=\frac{\left(\mathrm{I}_{\mathrm{x} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}} \cdot \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{x}} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}}^{2}\right)}
$$

$$
\mathrm{y}_{\mathrm{D}}:=\frac{\left(-\mathrm{I}_{\mathrm{y} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{xy}} \cdot \mathrm{I}_{\mathrm{x} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{x}} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}}^{2}\right)}
$$

now we can calculate $\omega \mathrm{D}$ by first calculating Ω (this is warping referenced to shear center with an arbitrary coordinate system.

$$
\begin{aligned}
& \beta \text { is the same as our angle } \alpha h_{D} \cdot d s=h_{C} \cdot d s-x_{D} \cdot \sin (\alpha) \cdot d s+y_{D} \cdot \cos (\alpha) \cdot d s \\
& d \Omega_{D}=d \omega_{D}=h_{D} \cdot d s \quad \Omega_{D}(s)=\int_{0}^{s} h_{D} d s=\int_{0}^{s} h_{C}-x_{D} \cdot \sin (\alpha)+y_{D} \cdot \cos (\alpha) d s \\
& \Omega_{D}(s)=\int_{0}^{s} h_{C} d s-\int_{0}^{s} x_{D} \cdot \sin (\alpha) d s-\int_{0}^{s} y_{D} \cdot \cos (\alpha) d s=\omega c(s)-x_{D} \cdot \int_{y_{0}}^{y} 1 d y+y_{D} \cdot \int_{x_{0}}^{x} 1 d x \quad \text { where } \alpha \text { constant }
\end{aligned}
$$

as ...

$$
\mathrm{ds} \cdot \cos (\alpha)=\mathrm{dx} \quad \mathrm{ds} \cdot \sin (\alpha)=\mathrm{dy}
$$

$$
\Delta \Omega_{D}(\mathrm{~s})=\Delta \omega c-\mathrm{x}_{\mathrm{D}} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)+\mathrm{y}_{\mathrm{D}} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)
$$

if we set $\Omega_{D 0}=0$ at the start of a line segment, then $\Omega_{D 1}=\Omega_{D 0}+\Delta \Omega_{D}$
we find the centroid as we would X and Y (it's linear therefore cg of each segment is $(\Omega 1+\Omega 0) / 2)$. Then the normalized $\Omega \mathrm{D}$ i.e. $\omega \mathrm{D}$ is. $\Omega \mathrm{D}-\Omega \mathrm{D}$ o and the moments are calculated as above

> calculate "centroid" of warping wrt shear center:

$$
\Delta \mathrm{Q}_{\Omega_{\mathrm{i}}}=\frac{\mathrm{a}_{\mathrm{i}}}{2} \cdot\left(\Omega_{\mathrm{D}_{\mathrm{i}}}+\Omega_{\mathrm{D}_{\mathrm{i}+1}}\right) \quad \Omega_{\mathrm{Dcg}}=\frac{\sum \Delta \mathrm{Q}_{\Omega \mathrm{D}}}{\mathrm{~A}} \quad \quad \omega_{\mathrm{D}_{\mathrm{j}}}=\Omega_{\mathrm{D}_{\mathrm{j}}}-\Omega_{\mathrm{Dcg}}
$$

$$
\begin{aligned}
& I_{\omega}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{3} \cdot\left[\left(\omega D_{1}\right)^{2}+\omega D_{0} \cdot \omega D_{1}+\left(\omega D_{0}\right)^{2}\right] \\
& \mathrm{I}_{\mathrm{y} \omega \mathrm{D}}=\frac{\mathrm{t} \cdot\left(\mathrm{~s}_{1}-\mathrm{s}_{0}\right)}{6} \cdot\left[2 \cdot\left(\mathrm{x}_{1} \cdot \omega \mathrm{D}_{1}+\mathrm{x}_{0} \cdot \omega \mathrm{D}_{0}\right)+\mathrm{x}_{0} \cdot \omega \mathrm{D}_{1}+\mathrm{x}_{1} \cdot \omega \mathrm{D}_{0}\right] \\
& I_{x \omega D}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[2 \cdot\left(y_{1} \cdot \omega_{D 1}+y_{0} \cdot \omega D_{0}\right)+y_{0} \cdot \omega D_{1}+y_{1} \cdot \omega D_{0}\right] \quad \text { why? } \\
& \int_{0}^{\mathrm{b}} \sigma \cdot \mathrm{xdA}=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \int_{0}^{\mathrm{b}} \omega \cdot \mathrm{xdA}=\int_{0}^{\mathrm{b}} \omega \cdot \mathrm{xdA}=0 \quad \int_{0}^{\mathrm{b}} \sigma \cdot \mathrm{ydA}=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \int_{0}^{\mathrm{b}} \omega \cdot \mathrm{ydA}=\int_{0}^{\mathrm{b}} \omega \cdot \mathrm{ydA}=0 \quad \text { as bending } \quad \text { moments }=0 \\
& \text { first moment approach } \\
& \text { assume Xcg and Ycg known } \\
& Q_{X}=\int_{s_{0}}^{S_{1}} y d A \\
& \int_{s_{0}}^{s_{1}} \mathrm{y} \cdot \mathrm{tds} \quad \mathrm{ds}=\frac{\mathrm{dx}}{\cos (\alpha)} \quad \Delta \mathrm{s}=\text { length }=\frac{\Delta \mathrm{x}}{\cos (\alpha)} \quad \int_{0}^{\mathrm{b}} \mathrm{y} \cdot \mathrm{tds}=\frac{\mathrm{t}}{\cos (\alpha)} \cdot \int_{\mathrm{x}_{0}}^{\mathrm{x}_{1}} \mathrm{y} d \mathrm{dx} \\
& \left.\int_{x_{0}}^{x_{1}}\left[\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+y_{0}-x_{0} \cdot\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)\right] d x \right\rvert\, \begin{array}{l}
\text { simplify } \\
\text { factor }
\end{array} \frac{1}{2} \cdot\left(x_{1}-x_{0}\right) \cdot\left(y_{1}+y_{0}\right)=> \\
& \int_{s_{0}}^{\mathrm{s}_{1}} \mathrm{y} \cdot \mathrm{tds}=\frac{\mathrm{t}}{\cos (\alpha)} \cdot\left[\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) \cdot\left(\frac{\left.\mathrm{y}_{1}+\mathrm{y}_{0}\right)}{2}\right)\right]=\mathrm{t} \cdot\left(\mathrm{~s}_{1}-\mathrm{s}_{0}\right) \cdot \frac{\mathrm{y}_{1}+\mathrm{y}_{0}}{2}=\mathrm{a}_{\mathrm{i}} \cdot\left(\frac{\left.\mathrm{y}_{1}+\mathrm{y}_{0}\right)}{2}\right)
\end{aligned}
$$

this should have been obvious as cg is mid point and moment of area is $y_{c g}$ * area

$$
\mathrm{ym}_{\mathrm{i}}=\frac{\mathrm{y}_{\mathrm{i}+1}+\mathrm{y}_{\mathrm{i}}}{2} \quad \mathrm{xm}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}+1}+\mathrm{x}_{\mathrm{i}}}{2}
$$

now for the moments of inertia:
we saw that:
$I_{x}=\int_{0}^{b} y^{2} \cdot t d s=-\int_{y_{0}}^{y_{1}} Q_{x} \cdot t d y$
now this presents a small problem:
Q is linear only where x or y is constant otherwise it's parabolic this can be handled easily if we calculate the values at the midpoints and use Simpson's rule for integration: it is exact for a parabolic variation (linear is a subset order = 1) we will get 2*n_elements +1 values
this time we'll keep a running total
increase is calculated using the approach above over each half (hence $1 / 2$ of area and $1 / 2$ of endpoints) of the segment:
$\Delta \mathrm{Q}_{\mathrm{x}_{2 \cdot \mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{y}_{\mathrm{i}}+\mathrm{ym}_{\mathrm{i}}\right) \Delta \mathrm{Q}_{\mathrm{x}_{2 \cdot \mathrm{i}+1}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{ym}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}+1}\right) \quad \Delta \mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{x}_{\mathrm{i}}+\mathrm{xm}_{\mathrm{i}}\right) \Delta \mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}+1}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{xm}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}+1}\right)$
$\mathrm{k}:=1$.. $2 \cdot \mathrm{n}$ _elements

$$
\mathrm{Q}_{\mathrm{x}_{0}}:=0
$$

$$
\mathrm{Q}_{\mathrm{x}_{\mathrm{k}}}=\mathrm{Q}_{\mathrm{x}_{\mathrm{k}-1}}+\Delta \mathrm{Q}_{\mathrm{x}_{\mathrm{k}-1}}
$$

$$
\mathrm{Q}_{\mathrm{y}_{0}}:=0 \quad \mathrm{Q}_{\mathrm{y}_{\mathrm{k}}}=\mathrm{Q}_{\mathrm{y}_{\mathrm{k}-1}}+\Delta \mathrm{Q}_{\mathrm{y}_{\mathrm{k}-1}}
$$

integration is over entire element using midpoint and endpoint values => n_element values

$$
\Delta I_{x}=\int_{y_{0}}^{y_{1}} y^{2} \cdot t d y=-\int_{y_{0}}^{y_{1}} Q_{x} \cdot t d y=-t \frac{\left(y_{1}-y_{0}\right)}{6} \cdot\left[Q_{x_{2 \cdot i}}+4 \cdot Q_{x_{2 \cdot i+1}}+Q_{x_{2 \cdot(i+1)}}\right] \quad \text { Simpson's rule }
$$

since this result will be useful later on we'll put it aside:
similarly for lyy

$$
\begin{array}{ll}
\mathrm{Q}_{\mathrm{x}_{-} \text {bar }_{\mathrm{i}}}=\mathrm{Q}_{\mathrm{x}_{2 \cdot i}}+4 \cdot \mathrm{Q}_{\mathrm{x}_{2 \cdot i+1}}+\mathrm{Q}_{\left.\mathrm{x}_{2 \cdot(\mathrm{i}+1)}\right)} & \mathrm{Q}_{\mathrm{y}_{-} \mathrm{bar}_{\mathrm{i}}}=\mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}}}+4 \cdot \mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}+1}}+\mathrm{Q}_{\mathrm{y}_{2 \cdot(\mathrm{i}+1)}} \\
\mathrm{I}_{\mathrm{Xx}}=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n} \text { elements-1 }} \mathrm{Q}_{-} \mathrm{bar}_{\mathrm{x}_{\mathrm{i}}} \cdot \Delta \mathrm{y}_{\mathrm{i}} & \mathrm{I}_{\mathrm{yy}}=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n}_{-} \text {elements }-1} \mathrm{Q}_{-} \mathrm{bar}_{\mathrm{y}_{\mathrm{i}}} \cdot \Delta \mathrm{x}_{\mathrm{i}}
\end{array}
$$

the cross moments of inertia are:

$$
\begin{array}{ll}
I_{y z}=-\int_{0}^{b} Q_{y} d z=-\int_{0}^{b} Q_{z} d y & \\
I_{x y}=\frac{-1}{6} \cdot \sum_{i=0}^{n-e l e m e n t s-1} Q_{y-} \operatorname{bar}_{x_{i}} \cdot \Delta x_{i}=\frac{-1}{6} \cdot \sum_{i=0}^{n_{i}} \quad
\end{array}
$$

$$
\begin{array}{lr}
\text { derived above: } & \text { and in lecture 6 } \\
\Delta \omega_{\mathrm{c}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{0}}{2} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)-\frac{\mathrm{y}_{1}+\mathrm{y}_{0}}{2} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) & \mathrm{I}_{\mathrm{y} \omega}=-\int_{0}^{\mathrm{b}} \mathrm{Q}_{\mathrm{y}} \mathrm{~d} \omega=-\int_{0}^{\mathrm{b}} \mathrm{Q}_{\omega} \mathrm{dx} \\
\Delta \omega_{\mathrm{c}}=\mathrm{xm} \cdot(\Delta \mathrm{y})-\mathrm{ym} \cdot \Delta \mathrm{x} & \mathrm{I}_{\mathrm{x} \omega}=-\int_{0}^{\mathrm{b}} \mathrm{Q}_{\mathrm{x}} \mathrm{~d} \omega=-\int_{0}^{\mathrm{b}} \mathrm{Q}_{\omega} \mathrm{dy}
\end{array}
$$

$$
\Delta \omega_{c_{i}}=x m_{i} \cdot \Delta y_{i}-y m_{i} \cdot \Delta x_{i} \quad I_{x \omega c}=\frac{-1}{6} \cdot \sum_{i=0}^{n_{-} \text {elements-1 }} Q_{x_{-} b a r_{i}} \cdot \Delta \omega_{c_{i}} \quad I_{y \omega c}=\frac{-1}{6} \cdot \sum_{i=0}^{n_{-} \text {elements }-1} Q_{y_{-} b a r} \cdot \Delta \omega_{c_{i}}
$$

as above:

$$
x_{D}:=\frac{\left(\mathrm{I}_{x \omega c} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}} \cdot \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{x}} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}}^{2}\right)} \quad \mathrm{y}_{\mathrm{D}}:=\frac{\left(-\mathrm{I}_{\mathrm{y} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{xy}} \cdot \mathrm{I}_{\mathrm{x} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{x}} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}}^{2}\right)}
$$

now we can calculate the warping parameters: as above: calculate $\Omega \mathrm{D}$ and centroid

$$
\Delta \Omega_{\mathrm{D}}(\mathrm{~s})=\Delta \omega \mathrm{c}-\mathrm{x}_{\mathrm{D}} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)+\mathrm{y}_{\mathrm{D}} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)
$$

if we set $\Omega_{D 0}=0$ at the start of a line segment, then $\Omega_{D 1}=\Omega_{D 0}+\Delta \Omega_{D}$
we find the centroid as we would X and Y (it's linear therefore cg of each segment is $(\Omega 1+\Omega 0) / 2$). Then the normalized $\Omega \mathrm{D}$ i.e. $\omega \mathrm{D}$ is. $\Omega \mathrm{D}-\Omega \mathrm{Do}$ and the moments are calculated as above

$$
\begin{aligned}
& \text { calculate "centroid" of warping wrt shear center: } \\
& \Delta Q_{\Omega D_{i}}=\frac{a_{i}}{2} \cdot\left(\Omega_{D_{i}}+\Omega_{D_{i+1}}\right) \quad \Omega_{D c g}=\frac{\sum \Delta Q_{\Omega D}}{A} \quad \omega_{D_{j}}=\Omega_{D_{j}}-\Omega_{D c g}
\end{aligned}
$$

instead of direct integration based on the linear relationship as above we calculate the value at the mid-points and the Q

$$
\omega \mathrm{m}_{\mathrm{i}}=\frac{\omega_{\mathrm{i}}+{ }^{\omega} \mathrm{D}_{\mathrm{i}+1}}{2}
$$

now for the moments of inertia:
we saw that above (this was copied an x and y changed to ω :

$$
I_{\omega}=\int_{0}^{b} \omega^{2} \cdot t d s=-\int_{\omega_{0}}^{\omega} Q_{\omega} \cdot t d \omega
$$

increase is calculated using the approach above over each half (hence $1 / 2$ of area and $1 / 2$ of endpoints) of the segment:

$$
\Delta \mathrm{Q}_{\omega_{2 \cdot \mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\omega_{\mathrm{i}}+\omega \mathrm{m}_{\mathrm{i}}\right) \Delta \mathrm{Q}_{\omega_{2 \cdot \mathrm{i}+1}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\omega \mathrm{~m}_{\mathrm{i}}+\omega_{\mathrm{i}+1}\right)
$$

$\mathrm{k}:=1 . .2 \cdot \mathrm{n}$ _elements

$$
\mathrm{Q}_{\omega_{0}}:=0 \quad \mathrm{Q}_{\omega_{\mathrm{k}}}=\mathrm{Q}_{\omega_{\mathrm{k}-1}}+\Delta \mathrm{Q}_{\omega_{\mathrm{k}-1}}
$$

integration is over entire element using midpoint and endpoint values => n_element values

$$
\Delta \mathrm{I}_{\omega}=\int_{\omega_{0}}^{\omega_{1}} \omega^{2} \cdot \mathrm{td} \omega=-\int_{\omega_{0}}^{\omega_{1}} \mathrm{Q}_{\omega} \cdot \mathrm{td} \omega=-\mathrm{t} \frac{\left(\omega_{1}-\omega_{0}\right)}{6} \cdot\left[\mathrm{Q}_{\omega_{2 \cdot \mathrm{i}}}+4 \cdot \mathrm{Q}_{\omega_{2 \cdot i+1}}+\mathrm{Q}_{\omega_{2 \cdot(i+1)}}\right] \quad \text { Simpson's rule }
$$

since this result will be useful later on we'll put it aside:

$$
\begin{aligned}
& \mathrm{Q}_{\omega_{-} \text {bar }_{\mathrm{i}}}=\mathrm{Q}_{\omega_{2 \cdot \mathrm{i}}}+4 \cdot \mathrm{Q}_{\omega_{2 \cdot i+1}}+\mathrm{Q}_{\omega_{2 \cdot(\mathrm{i}+1)}} \\
& \mathrm{I}_{\omega \omega}=\frac{-1}{6} \cdot{ }^{\mathrm{n}_{\text {elements }-1}} \mathrm{Q}_{\omega_{-} \mathrm{bar}_{\mathrm{i}}} \cdot \Delta \omega_{\mathrm{i}}
\end{aligned}
$$

the cross moments are:

$$
\mathrm{I}_{\mathrm{X} \omega}=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n} _ \text {elements }-1} \mathrm{Q}_{\mathrm{x}_{-} \mathrm{bar}_{\mathrm{i}}} \cdot \Delta \omega_{\mathrm{i}} \quad \mathrm{I}_{\mathrm{y} \omega}=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n}_{-} \text {elements }-1} \mathrm{Q}_{\mathrm{y}_{-} \mathrm{bar}_{\mathrm{i}}} \cdot \Delta \omega_{\mathrm{i}}
$$

Computational Scheme for Cross-Sectional Quantities

$$
\begin{aligned}
& \mathrm{X}, \mathrm{Y}, \quad 0 \ldots \mathrm{n} \text { _elements as get extra when start with } 0 \\
& \text { A } 0 \ldots \text { nelements }-1 \\
& \mathrm{X}:=\text { input } \quad \mathrm{Y}:=\text { input } \quad \mathrm{n} \text { _elements }:=\text { input } \quad \mathrm{a}:=\text { input } \quad \text { or } \ldots \quad \mathrm{t}:=\text { input } \\
& \text { n_elements }:=3 \\
& X:=\left(\begin{array}{l}
0 \\
5 \\
5
\end{array}\right) \quad Y:=\left(\begin{array}{c}
20 \\
20 \\
0
\end{array}\right) \quad \mathrm{t}:=\left(\begin{array}{l}
0.5 \\
0.5 \\
0.5
\end{array}\right)
\end{aligned}
$$

we will use these later
$\Delta \mathrm{X}_{\mathrm{i}}:=\mathrm{X}_{\mathrm{i}+1}-\mathrm{X}_{\mathrm{i}}$
$\Delta \mathrm{x}_{\mathrm{i}}:=\Delta \mathrm{X}_{\mathrm{i}}$
$\Delta \mathrm{Y}_{\mathrm{i}}:=\mathrm{Y}_{\mathrm{i}+1}-\mathrm{Y}_{\mathrm{i}}$
$\Delta y_{i}:=\Delta Y_{i}$
calculate area if necessary
$a_{i}:=\operatorname{if}\left[a_{i}=0, t_{i} \cdot \sqrt{\left(\Delta X_{i}\right)^{2}+\left(\Delta Y_{i}\right)^{2}}, a_{i}\right] \quad A:=\sum a \quad A=15$
calculate centroid in X and Y coordinate system and coordinates in centroidal system:

$$
\begin{array}{ll}
\Delta \mathrm{Q}_{\mathrm{Y}_{\mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{2} \cdot\left(\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{\mathrm{i}+1}\right) & \mathrm{X}_{\mathrm{cg}}:=\frac{\sum \Delta \mathrm{Q}_{\mathrm{Y}}}{\mathrm{~A}} \quad \mathrm{X}_{\mathrm{cg}}=4.167 \quad \mathrm{x}_{\mathrm{j}}:=\mathrm{X}_{\mathrm{j}}-\mathrm{X}_{\mathrm{cg}} \\
\Delta \mathrm{Q}_{\mathrm{X}_{\mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{2} \cdot\left(\mathrm{Y}_{\mathrm{i}}+\mathrm{Y}_{\mathrm{i}+1}\right) & \mathrm{Y}_{\mathrm{cg}}:=\frac{\sum \Delta \mathrm{Q}_{\mathrm{X}}}{\mathrm{~A}}
\end{array}
$$

calculate moments of inertia

these are contributions from segment $\mathrm{i}=0, \mathrm{t}^{*}(\mathrm{~s} 1-\mathrm{s} 0)=$ area of segment ai

$$
\begin{aligned}
& I_{x}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{3} \cdot\left[\left(y_{1}\right)^{2}+y_{0} \cdot y_{1}+\left(y_{0}\right)^{2}\right] \\
& I_{y}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{3} \cdot\left[\left(x_{1}\right)^{2}+x_{0} \cdot x_{1}+\left(x_{0}\right)^{2}\right] \\
& I_{x}:=\sum_{i} \frac{a_{i}}{3} \cdot\left[\left(y_{i+1}\right)^{2}+y_{i} \cdot y_{i+1}+\left(y_{i}\right)^{2}\right] \quad I_{x}=833.333 \quad I_{y}:=\sum_{i} \frac{a_{i}}{3} \cdot\left[\left(x_{i+1}\right)^{2}+x_{i} \cdot x_{i+1}+\left(x_{i}\right)^{2}\right] \quad I_{y}=31.25 \\
& I_{x y}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[2 \cdot\left(x_{1} \cdot y_{1}+x_{0} \cdot y_{0}\right)+x_{0} \cdot y_{1}+x_{1} \cdot y_{0}\right] \\
& I_{x y}:=\sum_{i} \frac{a_{i}}{6} \cdot\left[2\left(x_{i+1} \cdot y_{i+1}+x_{i} \cdot y_{i}\right)+x_{i} \cdot y_{i+1}+x_{i+1} \cdot y_{i}\right] \quad I_{x y}=0 \\
& \mathrm{I}_{\mathrm{yx}}:=\mathrm{I}_{\mathrm{xy}} \\
& \text { calculate } \Delta \omega \mathrm{c} \text { this is a running total: } \quad \Delta \omega_{\mathrm{c}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{0}}{2} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)-\frac{\mathrm{y}_{1}+\mathrm{y}_{0}}{2} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) \\
& \text { first calculate each increment } \quad \Delta \omega c_{i}:=\frac{x_{i+1}+x_{i}}{2} \cdot \Delta y_{i}-\frac{y_{i+1}+y_{i}}{2} \cdot\left(\Delta x_{i}\right) \\
& \omega c_{0}:=0 \quad \omega c_{i+1}:=\omega c_{i}+\frac{x_{i+1}+x_{i}}{2} \cdot \Delta y_{i}-\frac{y_{i+1}+y_{i}}{2} \cdot\left(\Delta x_{i}\right) \quad \omega c_{i+1}:=\omega c_{i}+\Delta \omega c_{i}
\end{aligned}
$$

calculate warping moments wrt centroid:

$$
\begin{array}{ll}
I_{y \omega c}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[2 \cdot\left(x_{1} \cdot \omega c_{1}+x_{0} \cdot \omega c_{0}\right)+x_{0} \cdot \omega c_{1}+x_{1} \cdot \omega c_{0}\right] & \text { contribution from each segment } \\
I_{x \omega c}=\frac{t \cdot\left(s_{1}-s_{0}\right)}{6} \cdot\left[2 \cdot\left(y_{1} \cdot \omega_{c 1}+y_{0} \cdot \omega c_{0}\right)+y_{0} \cdot \omega c_{1}+y_{1} \cdot \omega c_{0}\right] & \\
I_{y \omega c}:=\sum_{i} \frac{a_{i}}{6} \cdot\left[2\left(x_{i+1} \cdot \omega c_{i+1}+x_{i} \cdot \omega c_{i}\right)+x_{i} \cdot \omega c_{i+1}+x_{i+1} \cdot \omega c_{i}\right] & I_{y \omega c}=3.411 \times 10^{-13} \\
I_{x \omega c}:=\sum_{i} \frac{a_{i}}{6} \cdot\left[2\left(y_{i+1} \cdot \omega c_{i+1}+y_{i} \cdot \omega c_{i}\right)+y_{i} \cdot \omega c_{i+1}+y_{i+1} \cdot \omega c_{i}\right] & I_{x \omega c}=1.944 \times 10^{3}
\end{array}
$$

from torsion properties:

$$
\begin{array}{cl}
x_{D}:=\frac{\left(\mathrm{I}_{\mathrm{x} \omega \cdot} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}} \cdot \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{x} \cdot} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}}^{2}\right)} & \mathrm{y}_{\mathrm{D}}:=\frac{\left(-\mathrm{I}_{\mathrm{y} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{xy}} \cdot \mathrm{I}_{\mathrm{x} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\mathrm{x}} \cdot \mathrm{I}_{\mathrm{y}}-\mathrm{I}_{\mathrm{xy}}^{2}\right)} \\
\mathrm{x}_{\mathrm{D}}=2.333 & \mathrm{y}_{\mathrm{D}}=-1.091 \times 10^{-14}
\end{array}
$$

now we can calculate warping Ω relative to an arbitrary origin $\Omega 0=0$

$$
\Delta \Omega_{D}(\mathrm{~s})=\Delta \omega \mathrm{c}-\mathrm{x}_{\mathrm{D}} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)+\mathrm{y}_{\mathrm{D}} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)
$$

if we set $\Omega_{D 0}=0$ at the start of a line segment, then $\Omega_{D 1}=\Omega_{D 0}+\Delta \Omega_{D}$

$$
\begin{aligned}
& \Delta \Omega_{\mathrm{D}_{\mathrm{i}}}:=\Delta \omega \mathrm{c}_{\mathrm{i}}-\mathrm{x}_{\mathrm{D}} \cdot \Delta \mathrm{y}_{\mathrm{i}}+\mathrm{y}_{\mathrm{D}} \cdot \Delta \mathrm{x}_{\mathrm{i}} \\
& \Omega_{\mathrm{D}_{0}}:=0 \quad \Omega_{\mathrm{D}_{\mathrm{i}+1}}:=\Omega_{\mathrm{D}_{\mathrm{i}}}+\Delta \Omega_{\mathrm{D}_{\mathrm{i}}}
\end{aligned}
$$

calculate "centroid" of warping wrt shear center:

$$
\Delta Q_{\Omega D_{i}}:=\frac{a_{i}}{2} \cdot\left(\Omega_{D_{i}}+\Omega_{D_{i+1}}\right) \quad \Omega_{D c g}:=\frac{\sum \Delta Q_{\Omega \mathrm{D}}}{\mathrm{~A}} \quad \Omega_{\mathrm{Dcg}}=-35 \quad \omega_{D_{j}}:=\Omega_{D_{j}}-\Omega_{\mathrm{Dcg}}
$$

now we can calculate the normalized warping functions (relative to the shear center)

$$
\begin{aligned}
& I_{\omega}=\frac{\mathrm{t} \cdot\left(\mathrm{~s}_{1}-\mathrm{s}_{0}\right)}{3} \cdot\left[\left(\omega \mathrm{D}_{1}\right)^{2}+\omega \mathrm{D}_{0} \cdot \omega \mathrm{D}_{1}+\left(\omega \mathrm{D}_{0}\right)^{2}\right] \\
& \mathrm{I}_{\mathrm{y} \omega \mathrm{D}}=\frac{\mathrm{t} \cdot\left(\mathrm{~s}_{1}-\mathrm{s}_{0}\right)}{6} \cdot\left[2 \cdot\left(\mathrm{x}_{1} \cdot \omega \mathrm{D}_{1}+\mathrm{x}_{0} \cdot \omega \mathrm{D}_{0}\right)+\mathrm{x}_{0} \cdot \omega \mathrm{D}_{1}+\mathrm{x}_{1} \cdot \omega \mathrm{D}_{0}\right] \\
& \mathrm{I}_{\mathrm{x} \omega \mathrm{D}}=\frac{\mathrm{t} \cdot\left(\mathrm{~s}_{1}-\mathrm{s}_{0}\right)}{6} \cdot\left[2 \cdot\left(\mathrm{y}_{1} \cdot \omega \mathrm{D}_{1}+\mathrm{y}_{0} \cdot \omega \mathrm{D}_{0}\right)+\mathrm{y}_{0} \cdot \omega \mathrm{D}_{1}+\mathrm{y}_{1} \cdot \omega \mathrm{D}_{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& I_{\omega}:=\sum_{i} \frac{a_{i}}{3} \cdot\left[\left(\omega_{D_{i+1}}\right)^{2}+\omega_{D_{i}} \cdot \omega_{D_{i+1}}+\left(\omega_{D_{i}}\right)^{2}\right] \quad I_{\omega}=2.292 \times 10^{3} \\
& I_{y \omega D}:=\sum_{i} \frac{a_{i}}{6} \cdot\left[2\left(x_{i+1} \cdot \omega^{\omega} D_{i+1}+x_{i} \cdot \omega_{D_{i}}\right)+x_{i} \cdot \omega_{D_{i+1}}+x_{i+1} \cdot \omega_{D_{i}}\right] \quad I_{y \omega D}=-3.553 \times 10^{-13} \\
& I_{x \omega D}:=\sum_{i} \frac{a_{i}}{6} \cdot\left[2\left(y_{i+1} \cdot{ }^{\omega} D_{i+1}+y_{i} \cdot \omega_{0} D_{i}\right)+y_{i} \cdot \omega_{D_{i+1}}+y_{i+1} \cdot \omega_{0} D_{i}\right] \quad I_{x \omega D}=9.379 \times 10^{-13}
\end{aligned}
$$

Output:

$$
\begin{array}{cl}
\mathrm{X}_{\mathrm{cg}}=4.167 & \mathrm{Y}_{\mathrm{cg}}=10 \\
\mathrm{x}_{\mathrm{D}}=2.333 & \mathrm{y}_{\mathrm{D}}=-1.091 \times 10^{-14} \\
\Omega_{\mathrm{Dcg}}=-35 & \\
\mathrm{I}_{\mathrm{x}}=833.333 & \mathrm{I}_{\mathrm{yx}}=0 \\
\mathrm{I}_{\mathrm{y}}=31.25 & \mathrm{I}_{\mathrm{xy}}=0 \\
\mathrm{I}_{\mathrm{x} \omega \mathrm{c}}=1.944 \times 10^{3} & \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}=3.411 \times 10^{-13} \\
\mathrm{I}_{\omega}=2.292 \times 10^{3} & \\
\mathrm{I}_{\mathrm{x} \omega \mathrm{D}}=9.379 \times 10^{-13} \\
\mathrm{I}_{\mathrm{y} \omega \mathrm{D}}=-3.553 \times 10^{-13}
\end{array}
$$

Note: the coordinate system in this plot is X, Y therefore $x D$ and $y D$ needs to have $X c g$ and $Y c g$ added back in

first moment approach

repeat centroid calculations:
to hold values from above

$$
\mathrm{I}_{\mathrm{xx}}:=\mathrm{I}_{\mathrm{x}}
$$

$$
\mathrm{I}_{\mathrm{yy}}:=\mathrm{I}_{\mathrm{y}}
$$

we will use these later

$$
\Delta \mathrm{X}_{\mathrm{i}}:=\mathrm{X}_{\mathrm{i}+1}-\mathrm{X}_{\mathrm{i}}
$$

$\Delta \mathrm{x}_{\mathrm{i}}:=\Delta \mathrm{X}_{\mathrm{i}}$
$\Delta \mathrm{Y}_{\mathrm{i}}:=\mathrm{Y}_{\mathrm{i}+1}-\mathrm{Y}_{\mathrm{i}}$
$\Delta y_{i}:=\Delta Y_{i}$
calculate area if necessary

$$
a_{i}:=\text { if }\left[a_{i}=0, t_{i} \cdot \sqrt{\left(\Delta X_{i}\right)^{2}+\left(\Delta Y_{i}\right)^{2}}, a_{i}\right] \quad A:=\sum a \quad A=15
$$

calculate centroid in X and Y coordinate system and coordinates in centroidal system:

$$
\begin{array}{ll}
\Delta \mathrm{Q}_{\mathrm{X}_{\mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{2} \cdot\left(\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{\mathrm{i}+1}\right) & \mathrm{X}_{\mathrm{cg}}:=\frac{\sum \Delta \mathrm{Q}_{\mathrm{X}}}{\mathrm{~A}} \quad \mathrm{X}_{\mathrm{cg}}=4.167 \quad \mathrm{x}_{\mathrm{j}}:=\mathrm{X}_{\mathrm{j}}-\mathrm{X}_{\mathrm{cg}} \\
\Delta \mathrm{Q}_{\mathrm{Y}_{\mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{2} \cdot\left(\mathrm{Y}_{\mathrm{i}}+\mathrm{Y}_{\mathrm{i}+1}\right) & \mathrm{Y}_{\mathrm{cg}}:=\frac{\sum \Delta \mathrm{Q}_{\mathrm{Y}}}{\mathrm{~A}}
\end{array}
$$

first moment approach get midpoints and values for Q at end and midpoints:

$$
\begin{aligned}
& \mathrm{ym}_{\mathrm{i}}:=\frac{\mathrm{y}_{\mathrm{i}+1}+\mathrm{y}_{\mathrm{i}}}{2} \quad \quad \mathrm{xm}_{\mathrm{i}}:=\frac{\mathrm{x}_{\mathrm{i}+1}+\mathrm{x}_{\mathrm{i}}}{2} \\
& \Delta \mathrm{Q}_{\mathrm{x}_{2 \cdot \mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{y}_{\mathrm{i}}+\mathrm{ym}_{\mathrm{i}}\right) \Delta \mathrm{Q}_{\mathrm{x}_{2 \cdot \mathrm{i}+1}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{ym}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}+1}\right) \quad \Delta \mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{x}_{\mathrm{i}}+\mathrm{xm}_{\mathrm{i}}\right) \Delta \mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}+1}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\mathrm{xm}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}+1}\right) \\
& \mathrm{k}:=1 . .2 \cdot \mathrm{n} \text { _elements } \quad \text { we have a total of } 2 * n _ \text {elements }+1, k=1 \ldots 2^{*} n _e l e m e n t s \text { and } 0 \\
& \mathrm{Q}_{\mathrm{x}_{0}}:=0 \quad \mathrm{Q}_{\mathrm{x}_{\mathrm{k}}}:=\left(\mathrm{Q}_{\mathrm{x}_{\mathrm{k}-1}}+\Delta \mathrm{Q}_{\mathrm{x}_{\mathrm{k}-1}}\right) \quad \mathrm{Q}_{\mathrm{y}_{0}}:=0 \quad \mathrm{Q}_{\mathrm{y}_{\mathrm{k}}}:=\left(\mathrm{Q}_{\mathrm{y}_{\mathrm{k}-1}}+\Delta \mathrm{Q}_{\mathrm{y}_{\mathrm{k}-1}}\right) \\
& \mathrm{k} 1:=0 . .2 \cdot \mathrm{n} \text { _elements }+1
\end{aligned}
$$

integrate using Simpson's rule with midpoint values

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{X}_{-} \text {bar }_{\mathrm{i}}}:=\mathrm{Q}_{\mathrm{X}_{2 \cdot} \cdot \mathrm{i}}+4 \cdot \mathrm{Q}_{\mathrm{X}_{2 \cdot i+1}}+\mathrm{Q}_{\mathrm{X}_{2 \cdot(\mathrm{i}+1)}} \\
& \mathrm{Q}_{\mathrm{y}_{-} \text {bar }_{\mathrm{i}}}:=\mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}}}+4 \cdot \mathrm{Q}_{\mathrm{y}_{2 \cdot \mathrm{i}+1}}+\mathrm{Q}_{\mathrm{y}_{2 \cdot(\mathrm{i}+1)}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}=833.333 \quad \mathrm{I}_{\mathrm{xx}}=833.333 \quad \mathrm{I}_{\mathrm{y}}=31.25 \quad \mathrm{I}_{\mathrm{yy}}=31.25
\end{aligned}
$$

cross moments of inertia

$$
\begin{array}{lr}
\mathrm{I}_{\mathrm{xy}}:=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n} _ \text {elements }-1} \mathrm{Q}_{\mathrm{x}_{-} \mathrm{bar}_{\mathrm{i}}} \cdot \Delta \mathrm{x}_{\mathrm{i}} & \mathrm{I}_{\mathrm{yx}}:=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n}_{_} \text {elements }-1} \mathrm{Q}_{\mathrm{y}_{-}{ }_{-} \cdot r_{\mathrm{i}} \cdot \Delta \mathrm{y}_{\mathrm{i}}} \\
\mathrm{I}_{\mathrm{xy}}=0 & \mathrm{I}_{\mathrm{yx}}=-5.329 \times 10^{-14}
\end{array}
$$

warping moments relative to the centroid:

$$
\begin{array}{cc}
\Delta \omega_{c_{i}}:=x_{i} \cdot \Delta y_{i}-y_{i} \cdot \Delta x_{i} \quad I_{x \omega c}:=\frac{-1}{6} \cdot \sum_{i=0}^{n_{-} \text {elements }-1} Q_{x_{-} b r_{i}} \cdot \Delta \omega_{c_{i}} & I_{y_{\omega c c}}:=\frac{-1}{6} \cdot \sum_{i=0}^{n_{_} \text {elements }-1} Q_{y_{-} b a r_{i}} \cdot \Delta \omega_{c_{i}} \\
\mathrm{I}_{\mathrm{x} \omega \mathrm{c}}=1.944 \times 10^{3} & \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}=-3.032 \times 10^{-13}
\end{array}
$$

as above calculate shear center

$$
x_{D}:=\frac{\left(I_{x \omega c} \cdot I_{y}-I_{x y} \cdot I_{y \omega c}\right)}{\left(I_{x} \cdot I_{y}-I_{x y}^{2}\right)} \quad x_{D}=2.333 \quad y_{D}:=\frac{\left(-I_{y \omega c} \cdot I_{x}+I_{x y} \cdot I_{x \omega c}\right)}{\left(I_{x} \cdot I_{y}-I_{x y}^{2}\right)} \quad y_{D}=9.701 \times 10^{-15}
$$

now as above we can calculate the warping parmeters
now we can calculate warping Ω relative to an arbitrary origin $\Omega 0=0$

$$
\Delta \Omega_{\mathrm{D}}(\mathrm{~s})=\Delta \omega_{\mathrm{c}}-\mathrm{x}_{\mathrm{D}} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)+\mathrm{y}_{\mathrm{D}} \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)
$$

if we set $\Omega_{\mathrm{D} 0}=0$ at the start of a line segment, then $\Omega_{\mathrm{D} 1}=\Omega_{\mathrm{D} 0}+\Delta \Omega_{\mathrm{D}}$

$$
\Delta \Omega_{\mathrm{D}_{\mathrm{i}}}:=\Delta \omega_{\mathrm{c}_{\mathrm{i}}}-\mathrm{x}_{\mathrm{D}} \cdot \Delta \mathrm{y}_{\mathrm{i}}+\mathrm{y}_{\mathrm{D}} \cdot \Delta \mathrm{x}_{\mathrm{i}} \quad \Omega_{\mathrm{D}_{0}}:=0 \quad \Omega_{\mathrm{D}_{\mathrm{i}+1}}:=\Omega_{\mathrm{D}_{\mathrm{i}}}+\Delta \Omega_{\mathrm{D}_{\mathrm{i}}}
$$

calculate "centroid" of warping wrt shear center:

$$
\mathrm{I}_{\omega \omega}:=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\text {n_elements-1 }} \mathrm{Q}_{\omega_{-} \mathrm{bar}_{\mathrm{i}}} \cdot \Delta \omega_{\mathrm{i}} \quad \mathrm{I}_{\omega \omega}=2.292 \times 10^{3}
$$

the cross moments are:

$$
\mathrm{I}_{\mathrm{x} \omega}:=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n} _ \text {elements }-1} \mathrm{Q}_{\mathrm{x} _ \text {bar }} \cdot \Delta \omega_{\mathrm{i}} \quad \mathrm{I}_{\mathrm{X} \omega}=7.579 \times 10^{-14}
$$

$\mathrm{I}_{\mathrm{y} \omega}:=\frac{-1}{6} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n}-\text { elements }-1} \mathrm{Q}_{\mathrm{y}_{-} \mathrm{bar}_{\mathrm{i}}} \cdot \Delta \omega_{\mathrm{i}} \quad \mathrm{I}_{\mathrm{y} \omega}=1.137 \times 10^{-13}$

$$
\begin{aligned}
& \Delta Q_{\Omega D_{i}}:=\frac{a_{i}}{2} \cdot\left(\Omega_{D_{i}}+\Omega_{D_{i+1}}\right) \quad \Omega_{\text {Dcg }}:=\frac{\sum \Delta Q_{\Omega D}}{A} \quad \Omega_{\text {Dcg }}=-35 \quad \omega_{j}:=\Omega_{D_{j}}-\Omega_{\text {Dcg }} \\
& \omega \mathrm{m}_{\mathrm{i}}:=\frac{\omega_{\mathrm{i}}+\omega_{\mathrm{i}+1}}{2} \\
& \Delta \mathrm{Q}_{\omega_{2 \cdot \mathrm{i}}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\omega_{\mathrm{i}}+\omega \mathrm{m}_{\mathrm{i}}\right) \quad \Delta \mathrm{Q}_{\omega_{2 \cdot \mathrm{i}+1}}:=\frac{\mathrm{a}_{\mathrm{i}}}{4} \cdot\left(\omega \mathrm{~m}_{\mathrm{i}}+\omega_{\mathrm{i}+1}\right) \\
& \mathrm{k}:=1 \text {.. 2.n_elements } \quad \mathrm{Q}_{\omega_{0}}:=0 \\
& \mathrm{Q}_{\omega_{\mathrm{k}}}:=\mathrm{Q}_{\omega_{\mathrm{k}-1}}+\Delta \mathrm{Q}_{\omega_{\mathrm{k}-1}} \quad \mathrm{Q}_{\omega_{-} \mathrm{bar}_{\mathrm{i}}}:=\mathrm{Q}_{\omega_{2 \cdot \mathrm{i}}}+4 \cdot \mathrm{Q}_{\omega_{2 \cdot \mathrm{i}+1}}+\mathrm{Q}_{\omega_{2 \cdot(\mathrm{i}+1)}} \\
& \Delta \omega_{i}:=\omega_{i+1}-\omega_{i}
\end{aligned}
$$

Output:

$$
\mathrm{I}_{\mathrm{y} \omega}=1.137 \times 10^{-13}
$$

Note: the coordinate system in this plot is X, Y therefore $x D$ and $y D$ needs to have Xcg and Ycg added back in
if the example is as in the starting point:
the results can be compared with Shames: example 11.20

$$
X:=\left(\begin{array}{l}
0 \\
5 \\
5
\end{array}\right) \quad Y:=\left(\begin{array}{c}
20 \\
20 \\
0
\end{array}\right) \quad t:=\left(\begin{array}{l}
0.5 \\
0.5 \\
0
\end{array}\right)
$$

$$
e=\frac{t_{1} \cdot b^{2}}{2 \cdot b \cdot t_{1}+t_{2} \cdot \frac{h}{3}}
$$

for channel shape where $e=$ distance from web as shown

$$
\begin{array}{lll}
\mathrm{t}_{\text {flange }}:=\mathrm{t}_{0} & \mathrm{t}_{\mathrm{web}}:=\mathrm{t}_{1} & \mathrm{~b}:=5 \\
\mathrm{t}_{1}:=\mathrm{t}_{\text {flange }} & \mathrm{t}_{2}:=\mathrm{t}_{\mathrm{web}} & \mathrm{~h}:=20
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{e}:=\frac{\mathrm{t}_{1} \cdot \mathrm{~b}^{2}}{2 \cdot \mathrm{~b} \cdot \mathrm{t}_{1}+\mathrm{t}_{2} \cdot \frac{\mathrm{~h}}{3}} & \mathrm{e}=1.5 \\
\text { compares to distance from cg } & \text { from web as defined } \\
\mathrm{X}_{\mathrm{cg}}=4.167 & \mathrm{e}_{\text {rel_cg }}:=\mathrm{e}+(\\
\mathrm{x}_{\mathrm{D}}=2.333 & \mathrm{e}_{\text {rel_cg }}=2.333
\end{array}
$$

$$
\begin{aligned}
& \text { elements, centroid, shear center } \\
& X_{c g}=4.167 \\
& Y_{c g}=10 \\
& \mathrm{x}_{\mathrm{D}}=2.333 \\
& \mathrm{y}_{\mathrm{D}}=9.701 \times 10^{-15} \underbrace{\mathrm{Y}}_{\mathrm{Y}_{\mathrm{cg}}} \\
& \Omega_{\text {Dcg }}=-35 \\
& \mathrm{I}_{\mathrm{X}}=833.333 \\
& I_{y x}=-5.329 \times 10^{-14} \\
& I_{y}=31.25 \\
& I_{x y}=0 \\
& \mathrm{I}_{\mathrm{x} \omega \mathrm{c}}=1.944 \times 10^{3} \quad \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}=-3.032 \times 10^{-13} \\
& I_{\omega}=2.292 \times 10^{3} \\
& \mathrm{I}_{\mathrm{X} \omega}=7.579 \times 10^{-14}
\end{aligned}
$$

