
Lecture 5 - 2003 
Twist closed sections 

As this development would be almost identical to that of the open section, some of the 
development is simply repeated (copied) from the open section development. 
pure twist around center of rotation D => neither axial (σ) nor bending forces (Mx, My) act on 
section 

----------------------------- from equilibrium -------------------------------- pure twist 

⌠ ⌠ ⌠ 
⋅ σ dA = Nx 

 τ⋅hp dA =  q hp ds = Tp 
⌠ 

   σ dA = 0⌡ ⌡ ⌡ ⌡ 

⌠ 
⌠ σ⋅y dA = -M.z ⌠ 

( )  dA =  q⋅cos α
⌠ 

⌡  τ⋅cos α ( )  ds = Vy  σ⋅y dA = 0 
⌡ ⌡ ⌡ 

⌠ 
⌠ ⌠ 

⌡  τ⋅sin α ( )  ds = Vz  σ⋅z dA = 0 σ⋅z dA = My	
⌠ 

( )  dA =  q⋅sin α 
⌡ ⌡ ⌡ 

a) equilibrium of wall element: 
pure twist => . ξ = η = 0 => 

δv δψ ( ) + δη
⋅sin α= 

δx 
⋅cos α

δx 
( ) + hp⋅ 

δφ becomes δv = hD⋅ 
δφ 

δx δx δx δx 

b) compatibility (shear strain) 

d u + d v = γ 
ds dx here is first change. we cannot set γ = 0 as we did in the open problem 

=> d u = γ ⋅ −
d v  => d u = τ ⋅ −hD⋅

δφ 

⌠s τ δφ ⌠ds dx  ds G δx
u =  ds − ⋅ hDds + u0 xand integration along s =>  G δx  

( )  

⌡0 
⌡ 

⌠ 

δx  
( ) as γ is small => = 0for open sections u = − 

δφ 
⋅ hDds + u0 x 
⌡ 

other assumptions: section shape remains etc. same 
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δx δx 

Mx 

⌠ s

 τ 

ds 
See: Torsion of Thin-Walled, Noncircular Closed Shafts; Shames Section 


 G 14.5 particularly; equations 14.17, 14.18 and 14.21 (Bredt's formula)
⌡0 also: Hughes 6.1.19, 6.1.21, 6.1.22 and section 6.1 

Mx δφ G J  δφ⋅
⋅ ⋅Mx = 2 q⋅A q := 

2 A  
and ...... Mx := G J⋅ => q := ⋅ 

⋅⋅ δx 2 A  δx 

A in these relationships is the "swept area" i.e. per Shames; "total plane area vector of the area enclosed by the 
midline s." near 14.21 

δφ
⋅ ⋅⌠ s ⌠ s G J⋅

δx ⌠ s ⌠s 4 A2 integral 0 to b =>
 τ 

ds = q  1 ds = 
⋅ 

⋅ 1 ds = 
⋅ 

J 
⋅ 1 ds⋅ 

δφ J = 
⌠ b 1 

circular (all way
 G G  t 2 A⋅G  t 2 A   t δx around) defining J⌡0 ⌡0 ⌡0 ⌡0	  

t 
ds from 14.21 (Bredt's

⌡0 formula) 

⌠s τ ⌠ s


 G ⌡ δx 
( )  = 

⋅ 

J 
⋅  ( ) 
u =  ds −  hDds 


⋅
δφ 

+ uo x 
 ⌠s 1

ds −
⌠ s 
hD ds 


⋅
δφ 

+ uo x 2 A   t ⌡0 
δx⌡0  0   ⌡0  

as with open sections define "sectorial"  coordinate = Ω,  by its derivative 
Ω wrt arbitrary origin and ω wrt normalized sectorial coordinate 

⌠s definition:  1 ds 
 t 

⌠ s ⌠s ⌠ sJ J 
⋅ 
1 ⋅ds = dω Ω =  hDds − 

2 A  
⋅
 

1
t 
ds =  hDds − 2⋅A⋅

⌡0
dΩ = 

 
hD − 

2 A  t  ⌡0 
⋅

⌡0 
⌡0 ⌠b 1 

⋅ 
 ds 
 t
⌡0 

δφthe warping function then becomes (as previously): u = − ⋅Ω + u0 x φ'⋅ ( )( )  = − Ω + u0 xδx 

⌠ s 
 1 ds 

⌠s  t 
the warping function Ω has a "correction" to the  hDds term of 

−2⋅A⋅
⌡0 

⌡0 ⌠ b 1 ds 
 t
⌡0 

otherwise everything is identical. hD and hc still have same meaning in Ω and ω 
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b) warping stresses 
as before: axial strain = du/dx => u' = − Ω + u'0 xφ''⋅ ( )  and 

axial stress: 
σ = E u' = − φ''⋅Ω + E u'0 x⋅ E⋅ ⋅ ( )  

⌠ ⌠ 
( )   (− φ''⋅Ω + E u'0 x σ dA = 0 determines u'0 x  

E⋅ ⋅ ( ) ') dA = 0 => 
⌡ ⌡ 

⌠ ⌠ 
 Ω dA  Ω dA 
⌡ and stress becomes: ⌡ 

⋅ ( )  = E⋅φ'' σ = − φ''⋅Ω + E⋅φ''⋅ = − φ''⋅ωE u'0 x A 
E⋅ E⋅ 

A 

 ⌠  ⌠  Ω dA  Ω dA
 ⌡  ⌡ 

E⋅ E⋅that is: σ = − φ''⋅Ω − = − φ''⋅ω where ω = Ω −
 A  A 

shear stress 
axial stress: σ E− φ''⋅ ⋅= ω 

shear flow follows from integration of 	 d q +  
d σ⋅t = 0 along s and leads to :

ds dx  

⌠ 

d
d
s
q = −



 
d
d
x 
σ

 => q s, x) = − d σ ds + q1 x( 

 dx 
( )  

⌡ 

using the expression for axial stress σ = E u' = − φ''⋅ω⋅ E⋅ 

⌠ s ⌠ s ⌠ s  
( ( )  −   

d ( )  −  − φ'''⋅ω⋅t ds = q1 x 

⌡ 

ω⋅t dsq s, x) = q1 x  dx 
σ

⋅t ds = q1 x ⌡0

E⋅ ( )  + E⋅φ'''  

⌡0 
 0  

where q1 x( ) is f(x) unlike open section we cannot set it = 0 ( )  ≠ 0q1 x
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 we can superpose an open and closed problem setting the "slip" i.e. γ at an arbitrary cut = 0 
this is equivalent to collecting all the s variation into the open solution and the x variation into 
the constant 

−Tω ⌠ ⌠ s 
,qopen(s x) = τ open⋅t = 

Iωω 
⋅Qω Qω =  ω dA =  ω⋅t ds 

⌡ ⌡0 

the ω derived above is the value with the constant of integration set to zero, i.e starting from open end. 

Tω
( ( )  + qopen(s x) = q1 x Iωω 
q s, x) = q1 x , ( )  − ⋅Qω 

⌠ ⌠ ⌠ N.B. these integrals are circular 
no slip =>  γ ds = 0 =  τ 

ds =  q 
ds = 0 i.e. no slip results are for

⋅⌡  G  t G  complete way around the closed⌡ ⌡ section 

⌠ 
 Tω

( )  − ⋅Qω⌠  q1 x Iωω ⌠ 1 Tω ⌠ 

 t  
( )⋅ ds − ⋅ Qω ds=> 0 =  q ds =  

t 
ds = q1 x  t Iωω ⌡ 

⌡ ⌡ ⌡ 

Tω ⌠ 
⋅ Qω dsIωω ⌡ 

=> q1 x( )  = so we can say: 
⌠ 
 1 ds

 t

⌡ ⌠


 Qω ds⌡
 

 ⌠  thus a "correction" is applied to Qω for  Qω ds 

 ⌠ 

⌡  1 ds 
q s, x) = −

 Tω 
⋅

Qω −


  t( 

Iωω  ⌠  ⌡ 
   1 ds  
   t  the closed section. the ω is for the closed section
  ⌡  (with it's correction applied) 
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IzIy 

c) Center of twist 

as for an open section, the second and third equilibrium condition above requires: 

⌠ ⌠

 σ⋅y dA = 0  σ⋅z dA = 0 for pure twist

⌡ ⌡


⌠ ⌠ 
E⋅using σ = − φ''⋅ω this requires  ω⋅y dA = 0  and  ω⋅z dA = 0  as E ≠ 0 and φ'' ≠ 0 

⌡ ⌡ 

as shown above this relationship is identical with the new "corrrected" ω so the shear center and 
center of twist can be calculated the same way. 

(Iyωc⋅Iz − Iyz⋅Izωc) and ... zD = 
(−Izωc⋅Iy + Iyz⋅Iyωc) 

=yD 
Iy⋅Iz − Iyz

2
 


Iy⋅Iz − Iyz

2 

 

and for principal axes Iyz = 0 Iyz := 0 

(Iyωc⋅Iz − Iyz⋅Izωc) (−Izωc⋅Iy + Iyz⋅Iyωc)
yD := zD := 

 2  2 
Iy⋅Iz − Iyz  Iy⋅Iz − Iyz  

Iyωc −Izωc 
→ →yD Iy 

and ... zD Iz 
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