
Lecture 4 - 2003 
Pure Twist 

pure twist around center of rotation D => neither axial (σ) nor bending forces (Mx, My) act on 
section; as previously, D is fixed, but (for now) arbitrary point. 
as before: 

a) equilibrium of wall element: 	 d q +  
d σ ⋅t = 0 

ds dx  

b) compatibility (shear strain) 	 d u + d v = γ = 0 small deflections 
ds dx 

c) tangential displacement (δv) in terms of η, ζ and φ (geometry) 

δv = δη 
⋅cos α ( ) + hp⋅ 

δφ( ) + 
δζ

⋅sin α 
δx δx δx δx N.B. hp =>hD from definition of problem 

further assumptions: 
1) preservation of cross section shape => ζ = ζ(x); η = η(x) φ = φ(x) 

2) shear though finite is small ~ 0 => d u = −
 
d v  

ds dx  

3) Hooke's law holds 	 => σ = E⋅
δu axial stress 
δx 

----------------------------- from equilibrium -------------------------------- pure twist 

⌠ ⌠ ⌠ 
⋅ σ dA = Nx 

 τ⋅hp dA =  q hp ds = Tp 
⌠ 

   σ dA = Nx = 0⌡ ⌡ ⌡ ⌡ 

⌠ 
⌠ σ⋅y dA = -M.z ⌠ ( )  dA =  q⋅cos α

⌠ 
⌡  τ⋅cos α ( )  ds = Vy  σ⋅y dA = −Mz = 0 

⌡ ⌡ ⌡ 

⌠ 
⌠ ⌠ 

⌡  τ⋅sin α ( )  ds = Vz  σ⋅z dA = My = 0 σ⋅z dA = My	
⌠ ( )  dA =  q⋅sin α 
⌡ ⌡ ⌡ 

pure twist also => only φ is finite i.e. other displacements (and derivatives) ζ = η = 0 => 

δv δη ( ) +
δζ

⋅sin α= 
δx 

⋅cos α
δx 

( ) + hp⋅ 
δφ becomes δv = hD⋅ 

δφ 

δx δx δx δx 

using negligible shear assumption d u = −
 
d v  => d u = −hD⋅ 

δφ and integration along s =>
ds dx  ds δx 
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⌠ 
u = − δφ 

⋅ hDds + u0 x δx  
( )

⌡ 

⋅ ( ) which showed u linear with y and z => plane sections plane.previously u = −η'⋅Y − ζ' Z  + u0 x 

⌠  here - only if h
D 

is constant so it can come outside hD  1 ds  - is u (longitudinal⌡  
displacement) linear. u is defined as warping displacement (function). 

stress analysis can be made analogous for torsion and bending IF the integrand hD⋅ds thought to 

be a coordinate. calculation of stresses will involve statical moments, moments of inertia and 
products of inertia which will be designated "sectorial" new coordinate = Ω 
Ω wrt arbitrary origin and ω wrt normalized sectorial coordinate (as before like wrt center of area) 

dΩ = hD⋅ds = dω the warping function then becomes: 
δφ 

( )  = − Ω + u0 xu = − ⋅Ω + u0 x φ'⋅ ( )
δx 

b) warping stresses 

as before: axial strain = du/dx => u' = − Ω + u'0 xφ''⋅ ( )  and 

σ = E u' = − φ''⋅Ω + E u'0 x⋅ E⋅ ⋅ ( )  

⌠ ⌠ 
( )   (− φ''⋅Ω + E u'0 x σ dA = 0 determines u'0 x  

E⋅ ⋅ ( )) dA = 0 => 
⌡ ⌡ 

⌠ ⌠ 
 Ω dA  Ω dA 
⌡ and stress becomes: ⌡ 

⋅ ( )  = E⋅φ'' σ = − φ''⋅Ω + E⋅φ''⋅ = − φ''⋅ωE u'0 x A 
E⋅ E⋅ 

A 

 ⌠  ⌠  Ω dA  Ω dA
 ⌡  ⌡ 

E⋅ E⋅that is: σ = − φ''⋅Ω − = − φ''⋅ω where ω = Ω −
 A  A 

this defines the normalized coordinate in the same sense as y and Y etc. 
.............................................................. 

as an aside: u' = − ω  => u = − ω + constant dω = hD⋅dsφ''⋅ φ'⋅ 

in this sense, ω is defined as the unit warping function 
displacement per unit change in rotation 
dependent only on s within a constant 

................................................................ 
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shear flow follows from integration of d q +  
d σ ⋅t = 0 along s as above and leads to :

ds dx  

⌠ 

d
d
s
q = −



 
d
d
x 

σ

⋅t => q s, x) = − d σ⋅t ds + q1 x( 

 dx 
( )  

⌡ 

using the expression for axial stress σ = E u' = − φ''⋅ω⋅ E⋅ 

⌠ s ⌠ s  
( ( )  −  

 
d σ ⋅t ds = q1 x 

⌠ s 
− φ'''⋅ω⋅t ds = q1 x ⌡

q s, x) = q1 x	  dx  
( )  −  E⋅ ( )  + E⋅φ'''


 
0 

ω⋅t ds 
⌡0 

⌡0 

where q1 x( ) is f(z) and represents the shear flow at the start of the region. it is 0 at a stress free 

boundary which is convenient for an open section: q1 x( )  = 0 

as before if we designate the integrals which are the static moments of the cross section 
area: e.g. Qy and Qz: 

⌠ ⌠ s 
Qω =  ω dA =  ω⋅t ds 

= "sectorial statical moment of the cut-off portion of the cross section" 

⌡ ⌡0 

(therefore: q s, x) = E⋅φ'''⋅Qω 

⌠ ⌠ 
designate torsional moment wrt D by Tω  τ⋅hDdA =  q hD ds = Tω⋅

 ⌡ ⌡ 

⌠ ⌠ 
now, since dΩ = hD⋅ds = dω =>  q hD ds =  q dω and using integration by parts⋅

⌡ ⌡ 

⌠parts: ⌠ 
( )  − ( ) 0 =

 u dv = (u⋅v) b uv ( )  −  v du u q v = ω 

⌡ ⌡ du = dq dv = dω 

integration along s and as dq = δq/δs*ds 

⌠ ⌠ ⌠ 
 q dω = q⋅ω(s = b) − q⋅ω(s = 0) −  ω dq = q⋅ω(s = b) − q⋅ω(s = 0) −  ω⋅

δq 
ds 

⌡ ⌡  δs 
⌡ 

q⋅ω(s = b) = 0 and q⋅ω(s = 0) = 0 as q(s=b) and q(s=0) = 0 (stress free ends) 

now using equilibrium: d q +  
d σ ⋅t = 0 

ds dx  

3 notes_13_pure_twist.mcd 



⌠ ⌠ ⌠ 
 q dω = 0 −  ω⋅

δq 
ds =  ω⋅ 

d
d
x 

σ⋅t ds substituting σ = − φ''⋅ω from above d σ = − φ'''⋅ω =>⌡  δs  E⋅ 
dx 

E⋅ 
⌡ ⌡ 

⌠ ⌠ ⌠ 
E⋅ ⋅ E⋅ q dω =  ω⋅d σ⋅t ds = − φ'''⋅ ω ω⋅t ds = − φ'''⋅Iωω

⌡  dx ⌡ 
⌡ 

where ⌠ ⌠ ⌠ ⌠ 
⋅ ⋅ ⋅ ⋅similar to Iz Iωω =  ω ω  dA =  ω ω⋅t ds Iz =  y y dA =  y y⋅t ds N.B. sometimes this 

⌡ ⌡ ⌡ ⌡ is represented by Iyy 

⌠ 
going back to the relationship for torsional moment, where we have derived relationships for  q hD ds⋅

⌡ 

=> 

⌠ ⌠ −Tω
Tω =  q hD ds =  q dω = − φ'''⋅Iωω therefore: φ''' = 

E Iωω 
⋅ E⋅

⌡ ⌡ ⋅ 

if we think of a distributed 
torsional load (moment/unit 
length) mD; 

equilibrium over element dz => 

Tω 

Tω + dTω/dx*dx 

mD 

−Tω + mD⋅dx + 
Tω + 

d Tω
⋅dx

 = 0 => T'ω = −mD dx   

and just as M'y = Vz the warping moment M'ω may be defined as M'ω = Tω 

−Mωthus: φ'' =  and the stresses are as follows: 
⋅E Iωω

Mω −Tω
E⋅ ( (σ = − φ''⋅ω = ⋅ω and ... from q s, x) = E⋅φ'''⋅Qω q s, x) = τ ⋅t = ⋅QωIωω Iωω 
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c) Center of twist 

calculation of the sectorial quantities assumes center of twist yD and zD are known. the 
second and third equilibrium conditions above require: 

⌠ ⌠

 σ⋅y dA = 0  σ⋅z dA = 0 for pure twist

⌡ ⌡


⌠ ⌠ 
E⋅using σ = − φ''⋅ω this requires  ω⋅y dA = 0  and  ω⋅z dA = 0  as E ≠ 0 and φ'' ≠ 0 

⌡ ⌡ 

now for some geometry: determine distance from tangent to wall from hD in terms of the coordinates of the 
center, the angle (α) that the y axis would have to rotate to line up with the positive direction of the tangent and 
the perpendicular distance from the origin of the centroidal coordinates hC 

ds 

hC 

hD 

a 

b 
C 

y 

z 

tangent 

α 

β 

β 

β D 

parallel to 

yD 

zD 

hD = hC − a − b 

a = yD⋅cos β = ( )( )  b zD⋅sin β 

cos β ( )β = α −
π ( )  = cosα − 

π  = sin α 
2  2  

sin β ( )( )  = sinα − 
π  = −cos α 

 2  

tangent 

hD = hC − a − b = hC − yD⋅cos β ( )  = hC − yD⋅sin α ( )( ) − zD⋅sin β ( ) + zD⋅cos α 

multiply by ds and apply geometry: α 

ds dy 

dz 
β 

y,η 

( )⋅ds + zD⋅cos αhD⋅ds = hC⋅ds − yD⋅sin α ( )⋅ds 

ds⋅cos β ( )( )  = dz = ds⋅sin α 

( )  = −dy = ds⋅(−cos α ( )  z,ζds⋅sin β ( )) dy = ds⋅cos α 

( )⋅ds + zD⋅cos αhD⋅ds = hC⋅ds − yD⋅sin α ( )⋅ds = hC⋅ds − yD⋅dz + zD⋅dy 

sectorial coordinate ω = hds => hD⋅ds = dωD = hC⋅ds − yD⋅dz + zD⋅dy = dωC − yD⋅dz + zD⋅dy 

5 notes_13_pure_twist.mcd 



IzIy 

zD

which is now integrated: ωD = ωC − yD⋅z + zD⋅y 

and introduced into the equilibrium equations above where ω is ωD : 

⌠ ⌠ 
 ω⋅y dA = 0  and  ω⋅z dA = 0  => 
⌡ ⌡ 

⌠ ⌠ ⌠ ⌠
 ωD⋅y dA = 0 =  (ωC − yD⋅z + zD⋅y)⋅y dA and ....  ωD⋅z dA = 0 =  (ωC − yD⋅z + zD⋅y)⋅z dA
   ⌡ ⌡ ⌡ ⌡ 

now using second moment nomenclature (including treating ω as a coordinate) => 

⌠ ⌠ ⌠
 ωC⋅y dA − yD  y z dA + zD⋅ y y dA = 0 becomes⋅ ⋅
⌡ ⌡ ⌡ 

Izωc − yD⋅Iyz − zD⋅Iz = 0 recall that Iyωc is referred to C for ω 

and ....... 

⌠ ⌠ ⌠
 ωC⋅z dA − yD  z z dA + zD⋅ y z dA = 0 becomes Iyωc − yD⋅Iy + zD⋅Iyz = 0⋅ ⋅
⌡ ⌡ ⌡ 

which provides two equations in two unknowns yD and zD 

Given 
Iyωc − yD⋅Iy + zD⋅Iyz = 0 Izωc − yD⋅Iyz + zD⋅Iz = 0  

yD  
:= Find(yD, zD)  zD  

yD → 
Iyωc⋅Iz − Iyz⋅ 

2

Izωc 
and ... zD →

−Izωc⋅Iy + Iyz⋅Iyωc 
Iy⋅Iz − Iyz Iy⋅Iz − Iyz

2 

and for principal axes Iyz = 0 Iyz := 0 yD := 
(Iyωc⋅Iz − Iyz⋅Izωc) 

zD := 
(−Izωc⋅Iy + Iyz⋅Iyωc) 

 2  2 
Iy⋅Iz − Iyz  Iy⋅Iz − Iyz  

Iyωc −Izωc 
→ →yD Iy 

and ... zD Iz 
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