Lecture 4-2003

Pure Twist

pure twist around center of rotation $D=>$ neither axial (σ) nor bending forces (Mx, My) act on section; as previously, D is fixed, but (for now) arbitrary point. as before:
a) equilibrium of wall element: $\quad \frac{d}{d s} q+\left(\frac{d}{d x} \sigma\right) \cdot t=0$
b) compatibility (shear strain) $\quad \frac{d}{d s} u+\frac{d}{d x} v=\gamma=0 \quad$ small deflections
c) tangential displacement (δv) in terms of η, ζ and ϕ (geometry)

$$
\frac{\delta v}{\delta x}=\frac{\delta \eta}{\delta x} \cdot \cos (\alpha)+\frac{\delta \zeta}{\delta x} \cdot \sin (\alpha)+h_{p} \cdot \frac{\delta \phi}{\delta x}
$$

N.B. $h_{p}=>h_{D}$ from definition of problem
further assumptions:

1) preservation of cross section shape $=>\zeta=\zeta(x) ; \eta=\eta(x) \phi=\phi(x)$
2) shear though finite is small $\sim 0 \Rightarrow \frac{d}{d s} u=-\left(\frac{d}{d x} v\right)$
3) Hooke's law holds $\Rightarrow \quad \sigma=\mathrm{E} \cdot \frac{\delta u}{\delta x}$ axial stress

pure twist

$$
\begin{array}{ll}
\int \sigma \mathrm{dA}=\mathrm{N}_{\mathrm{x}} & \int \tau \cdot \mathrm{~h}_{\mathrm{p}} \mathrm{dA}=\int \mathrm{q} \cdot \mathrm{~h}_{\mathrm{p}} \mathrm{ds}=\mathrm{T}_{\mathrm{p}}
\end{array} \begin{cases}\int \sigma \cdot \mathrm{ydA}=-\mathrm{M} \cdot \mathrm{z} & \int \tau \cdot \cos (\alpha) \mathrm{dA}=\int \mathrm{dA}=\mathrm{N}_{\mathrm{x}}=0 \\
\int \sigma \cdot \cos (\alpha) \mathrm{ds}=\mathrm{V}_{\mathrm{y}} & \int \sigma \cdot \mathrm{ydA}=-\mathrm{M}_{\mathrm{z}}=0 \\
\int \mathrm{zdA}=\mathrm{M}_{\mathrm{y}} & \int \tau \cdot \sin (\alpha) \mathrm{dA}=\int \mathrm{q} \cdot \sin (\alpha) \mathrm{ds}=\mathrm{V}_{\mathrm{z}}\end{cases}
$$

pure twist also => only ϕ is finite i.e. other displacements (and derivatives) $\zeta=\eta=0$ =>

$$
\frac{\delta \mathrm{v}}{\delta \mathrm{x}}=\frac{\delta \eta}{\delta \mathrm{x}} \cdot \cos (\alpha)+\frac{\delta \zeta}{\delta \mathrm{x}} \cdot \sin (\alpha)+\mathrm{h}_{\mathrm{p}} \cdot \frac{\delta \phi}{\delta \mathrm{x}} \quad \text { becomes } \quad \frac{\delta \mathrm{v}}{\delta \mathrm{x}}=\mathrm{h}_{\mathrm{D}} \cdot \frac{\delta \phi}{\delta \mathrm{x}}
$$

using negligible shear assumption $\frac{d}{d s} u=-\left(\frac{d}{d x} v\right)=>\frac{d}{d s} u=-h_{D} \cdot \frac{\delta \phi}{\delta x}$ and integration along $s=>$

$$
\mathrm{u}=-\frac{\delta \phi}{\delta \mathrm{x}} \cdot \int \mathrm{~h}_{\mathrm{D}} \mathrm{ds}+\mathrm{u}_{0}(\mathrm{x})
$$

previously $u=-\eta^{\prime} \cdot Y-\zeta^{\prime} \cdot Z+u_{0}(x)$ which showed u linear with y and $z=>$ plane sections plane.
here - only if h_{D} is constant so it can come outside $h_{D}\left(\int^{1 d s}-\right.$ is u (longitudinal displacement) linear. u is defined as warping displacement (function).
stress analysis can be made analogous for torsion and bending IF the integrand $\mathrm{h}_{\mathrm{D}} \cdot \mathrm{ds}$ thought to be a coordinate. calculation of stresses will involve statical moments, moments of inertia and products of inertia which will be designated "sectorial" new coordinate $=\Omega$ Ω wrt arbitrary origin and ω wrt normalized sectorial coordinate (as before like wrt center of area)
$\mathrm{d} \Omega=\mathrm{h}_{\mathrm{D}} \cdot \mathrm{ds}=\mathrm{d} \omega$ the warping function then becomes:

$$
\mathrm{u}=-\frac{\delta \phi}{\delta \mathrm{x}} \cdot \Omega+\mathrm{u}_{0}(\mathrm{x})=-\phi^{\prime} \cdot \Omega+\mathrm{u}_{0}(\mathrm{x})
$$

b) warping stresses

$$
\text { as before: axial strain }=d u / d x=>u^{\prime}=-\phi^{\prime \prime} \cdot \Omega+u_{0}^{\prime}(x) \text { and }
$$

$$
\sigma=\mathrm{E} \cdot \mathrm{u}^{\prime}=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \Omega+\mathrm{E} \cdot \mathrm{u}^{\prime}(\mathrm{x})
$$

$$
\int \sigma \mathrm{dA}=0 \quad \text { determines } \mathrm{u}_{0}^{\prime}(\mathrm{x}) \quad \int\left(-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \Omega+\mathrm{E} \cdot \mathrm{u}_{0}^{\prime}(\mathrm{x})\right) \mathrm{dA}=0 \quad=>
$$

that is: $\sigma=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot\left(\Omega-\frac{\int \Omega \mathrm{dA} \mid}{\mathrm{A}}\right)=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \omega \quad$ where $\quad \omega=\Omega-\frac{\int \Omega \mathrm{dA}}{\mathrm{A}}$
this defines the normalized coordinate in the same sense as y and Y etc.
as an aside: $\quad u^{\prime}=-\phi^{\prime} \cdot \omega \quad \quad \quad \mathrm{u}=-\phi^{\prime} \cdot \omega+$ constant $\quad \mathrm{d} \omega=\mathrm{h}_{\mathrm{D}} \cdot \mathrm{ds}$
in this sense, ω is defined as the unit warping function displacement per unit change in rotation dependent only on s within a constant
shear flow follows from integration of $\frac{d}{d s} q+\left(\frac{d}{d x} \sigma\right) \cdot t=0$ along s as above and leads to :

$$
\frac{\mathrm{d}}{\mathrm{ds}} \mathrm{q}=-\left(\frac{\mathrm{d}}{\mathrm{dx}} \sigma\right) \cdot \mathrm{t} \quad \Rightarrow \quad \mathrm{q}(\mathrm{~s}, \mathrm{x})=-\int \frac{\mathrm{d}}{\mathrm{dx}} \sigma \cdot \mathrm{t} \mathrm{ds}+\mathrm{q}_{1}(\mathrm{x})
$$

using the expression for axial stress $\sigma=\mathrm{E} \cdot \mathrm{u}^{\prime}=-\mathrm{E} \cdot \phi \phi^{\prime} \cdot \omega$

$$
q(s, x)=q_{1}(x)-\int_{0}^{s}\left(\frac{d}{d x} \sigma\right) \cdot t d s=q_{1}(x)-\int_{0}^{s}-E \cdot \phi^{\prime \prime \prime} \cdot \omega \cdot t d s=q_{1}(x)+E \cdot \phi^{\prime \prime \prime}\left(\int_{0}^{s} \omega \cdot t d s\right)
$$

where $q_{1}(x)$ is $f(z)$ and represents the shear flow at the start of the region. it is 0 at a stress free boundary which is convenient for an open section: $q_{1}(x)=0$
as before if we designate the integrals which are the static moments of the cross section area: e.g. Qy and Qz:
$\mathrm{Q}_{\omega}=\int \omega \mathrm{dA}=\int_{0}^{\mathrm{s}} \omega \cdot \mathrm{tds} \quad=$ "sectorial statical moment of the cut-off portion of the cross section"
therefore: $\quad \mathrm{q}(\mathrm{s}, \mathrm{x})=\mathrm{E} \cdot \phi^{\prime \prime \prime} \cdot \mathrm{Q}_{\omega}$
designate torsional moment wrt D by $\mathrm{T}_{\omega} \quad \int \tau \cdot \mathrm{h}_{\mathrm{D}} \mathrm{dA}=\int \mathrm{q} \cdot \mathrm{h}_{\mathrm{D}} \mathrm{ds}=\mathrm{T}_{\omega}$
now, since $\mathrm{d} \Omega=\mathrm{h}_{\mathrm{D}} \cdot \mathrm{ds}=\mathrm{d} \omega=>\int \mathrm{q} \cdot \mathrm{h}_{\mathrm{D}} \mathrm{ds}=\int \mathrm{qd} \omega$ and using integration by parts
parts: $\quad \int u d v=(u \cdot v)(b)-(u v)(0)-\int v d u \quad \begin{array}{ll}u=q & v=\omega \\ d u=d q & d v=d \omega\end{array}$
integration along s and as $d q=\delta q / \delta s^{*} d s$
$\int q d \omega=q \cdot \omega(s=b)-q \cdot \omega(s=0)-\int \omega d q=q \cdot \omega(\mathrm{~s}=\mathrm{b})-\mathrm{q} \cdot \omega(\mathrm{s}=0)-\int \omega \cdot \frac{\delta \mathrm{q}}{\delta \mathrm{s}} \mathrm{ds}$
$\mathrm{q} \cdot \omega(\mathrm{s}=\mathrm{b})=0 \quad$ and $\quad \mathrm{q} \cdot \omega(\mathrm{s}=0)=0 \quad$ as $\mathrm{q}(\mathrm{s}=\mathrm{b})$ and $\mathrm{q}(\mathrm{s}=0)=0$ (stress free ends)
now using equilibrium: $\frac{\mathrm{d}}{\mathrm{ds}} \mathrm{q}+\left(\frac{\mathrm{d}}{\mathrm{dx}} \sigma\right)_{\mathrm{t}} \cdot \mathrm{t}=0$

$$
\begin{aligned}
& \int \mathrm{qd} \omega=0-\int \omega \cdot \frac{\delta \mathrm{q}}{\delta \mathrm{~s}} \mathrm{ds}=\int \omega \cdot \frac{\mathrm{d}}{\mathrm{dx}} \sigma \cdot \mathrm{t} \mathrm{ds} \quad \text { substituting } \sigma=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \omega \text { from above } \frac{\mathrm{d}}{\mathrm{dx}} \sigma=-\mathrm{E} \cdot \phi^{\prime \prime \prime} \cdot \omega=> \\
& \int \mathrm{qd} \omega=\int \omega \cdot \frac{\mathrm{d}}{\mathrm{dx}} \sigma \cdot \mathrm{t} \mathrm{ds}=-\mathrm{E} \cdot \phi^{\prime \prime \prime} \cdot \int \omega \cdot \omega \cdot \mathrm{tds}=-\mathrm{E} \cdot \phi^{\prime \prime \prime} \cdot \mathrm{I}_{\omega \omega}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { where } \\
\text { similar to } \mathrm{Iz}
\end{array} \quad \mathrm{I}_{\omega \omega}=\int \omega \cdot \omega \mathrm{dA}=\int \omega \cdot \omega \cdot \mathrm{tds} \quad \mathrm{I}_{\mathrm{z}}=\int \mathrm{y} \cdot \mathrm{ydA}=\int \mathrm{y} \cdot \mathrm{y} \cdot \mathrm{tds}
\end{aligned}
$$ N.B. sometimes this is represented by lyy

going back to the relationship for torsional moment, where we have derived relationships for $\int q \cdot h_{D}$ ds =>

$$
\mathrm{T}_{\omega}=\int \mathrm{q} \cdot \mathrm{~h}_{\mathrm{D}} \mathrm{ds}=\int \mathrm{qd} \omega=-\mathrm{E} \cdot \phi^{\prime \prime \prime} \cdot \mathrm{I}_{\omega \omega} \quad \text { therefore: } \phi^{\prime \prime \prime}=\frac{-\mathrm{T}_{\omega}}{\mathrm{E} \cdot \mathrm{I}_{\omega \omega}}
$$

if we think of a distributed torsional load (moment/unit length) m_{D};
equilibrium over element dz =>

$$
-\mathrm{T}_{\omega}+\mathrm{m}_{\mathrm{D}} \cdot \mathrm{dx}+\left[\mathrm{T}_{\omega}+\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{~T}_{\omega}\right) \cdot \mathrm{dx}\right]=0 \quad \Rightarrow \quad \mathrm{~T}_{\omega}^{\prime}=-\mathrm{m}_{\mathrm{D}}
$$

and just as $\mathrm{M}^{\prime}{ }_{\mathrm{y}}=\mathrm{V}_{\mathrm{z}}$ the warping moment $\mathrm{M}^{\prime}{ }_{\omega}$ may be defined as $\mathrm{M}^{\prime}{ }_{\omega}=\mathrm{T}_{\omega}$
thus: $\quad \phi^{\prime \prime}=\frac{-\mathrm{M}_{\omega}}{\mathrm{E} \cdot \mathrm{I}_{\omega \omega}}$ and the stresses are as follows:
$\sigma=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \omega=\frac{\mathrm{M}_{\omega}}{\mathrm{I}_{\omega \omega}} \cdot \omega \quad$ and \ldots from $\mathrm{q}(\mathrm{s}, \mathrm{x})=\mathrm{E} \cdot \phi^{\prime \prime \prime} \cdot \mathrm{Q}_{\omega} \quad \mathrm{q}(\mathrm{s}, \mathrm{x})=\tau \cdot \mathrm{t}=\frac{-\mathrm{T}}{\mathrm{I}_{\omega \omega}} \cdot \mathrm{Q}_{\omega}$

c) Center of twist

calculation of the sectorial quantities assumes center of twist y_{D} and z_{D} are known. the second and third equilibrium conditions above require:

$$
\begin{gathered}
\int \sigma \cdot \mathrm{ydA}=0 \quad \int \sigma \cdot \mathrm{zdA}=0 \quad \text { for pure twist } \\
\text { using } \sigma=-\mathrm{E} \cdot \phi^{\prime \prime} \cdot \omega \text { this requires } \int \omega \cdot \mathrm{ydA}=0 \text { and } \int \omega \cdot \mathrm{zdA}=0 \text { as } \mathrm{E} \neq 0 \text { and } \phi^{\prime \prime} \neq 0
\end{gathered}
$$

now for some geometry: determine distance from tangent to wall from h_{D} in terms of the coordinates of the center, the angle (α) that the y axis would have to rotate to line up with the positive direction of the tangent and the perpendicular distance from the origin of the centroidal coordinates h_{c}

$h_{D} \cdot d s=h_{C} \cdot d s-y_{D} \cdot \sin (\alpha) \cdot d s+z_{D} \cdot \cos (\alpha) \cdot d s=h_{C} \cdot d s-y_{D} \cdot d z+z_{D} \cdot d y$
sectorial coordinate $\omega=$ hds =>

$$
\mathrm{h}_{\mathrm{D}} \cdot \mathrm{ds}=\mathrm{d} \omega_{\mathrm{D}}=\mathrm{h}_{\mathrm{C}} \cdot \mathrm{ds}-\mathrm{y}_{\mathrm{D}} \cdot \mathrm{dz}+\mathrm{z}_{\mathrm{D}} \cdot \mathrm{dy}=\mathrm{d} \omega_{\mathrm{C}}-\mathrm{y}_{\mathrm{D}} \cdot \mathrm{dz}+\mathrm{z}_{\mathrm{D}} \cdot \mathrm{dy}
$$

$$
\text { which is now integrated: } \quad \omega_{D}=\omega_{C}-y_{D} \cdot z+z_{D} \cdot y
$$

and introduced into the equilibrium equations above where ω is ω_{D} :

$$
\begin{aligned}
& \int \omega \cdot \mathrm{ydA}=0 \text { and } \int \omega \cdot \mathrm{zdA}=0=> \\
& \int \omega_{\mathrm{D}} \cdot \mathrm{ydA}=0=\int\left(\omega^{2} \mathrm{C}-\mathrm{y}_{\mathrm{D}} \cdot \mathrm{z}+\mathrm{z}_{\mathrm{D}} \cdot \mathrm{y}\right) \cdot \mathrm{ydA} \quad \text { and } \ldots . \quad \int \omega_{\mathrm{D}} \cdot \mathrm{zdA}=0=\int\left(\omega \mathrm{C}-\mathrm{y}_{\mathrm{D}} \cdot \mathrm{z}+\mathrm{z}_{\mathrm{D}} \cdot \mathrm{y}\right) \cdot \mathrm{zdA}
\end{aligned}
$$

now using second moment nomenclature (including treating ω as a coordinate) =>

$$
\begin{aligned}
& \int{ }^{\omega}{ }_{C} \cdot y d A-y_{D} \int y \cdot z d A+z_{D} \cdot \int y \cdot y d A=0 \quad \text { becomes } \\
& I_{z \omega c}-y_{D} \cdot I_{y z}-z_{D} \cdot I_{z}=0 \quad \text { recall that } I_{y \omega c} \text { is referred to } C \text { for } \omega
\end{aligned}
$$

and \qquad

$$
\int \omega_{C} \cdot z d A-y_{D} \int z \cdot z d A+z_{D} \cdot \int y \cdot z d A=0 \quad \text { becomes } \quad I_{y \omega c}-y_{D} \cdot I_{y}+z_{D} \cdot I_{y z}=0
$$

which provides two equations in two unknowns y_{D} and z_{D}

Given

$$
\begin{aligned}
& I_{y \omega c}-y_{D} \cdot I_{y}+z_{D} \cdot I_{y z}=0 \quad I_{z \omega c}-y_{D} \cdot I_{y z}+z_{D} \cdot I_{z}=0 \quad\left(\begin{array}{l}
\left.y_{D}\right) \\
\left.z_{D}\right)
\end{array}:=\operatorname{Find}\left(y_{D}, z_{D}\right)\right. \\
& y_{D} \rightarrow \frac{\mathrm{I}_{\mathrm{y} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{I}_{\mathrm{z} \omega \mathrm{c}}}{\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}}^{2}} \quad \text { and } \ldots \quad \quad \mathrm{z}_{\mathrm{D}} \quad \rightarrow \frac{-\mathrm{I}_{\mathrm{z} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{y}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{I}_{\mathrm{y} \omega \mathrm{c}}}{\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}}^{2}} \\
& \text { and for principal axes } \mathrm{I}_{\mathrm{yz}}=0 \quad \mathrm{I}_{\mathrm{yz}}:=0 \quad \mathrm{y}_{\mathrm{D}}:=\frac{\left(\mathrm{I}_{\mathrm{y} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{I}_{\mathrm{z} \omega \mathrm{c}}\right)}{\left(\mathrm{I}_{\left.\mathrm{y} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}}{ }^{2}\right)^{2}}^{\left(\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{I}_{\mathrm{yz}}{ }^{2}\right)} \quad \quad \mathrm{z}_{\mathrm{D}}:=\frac{\left(-\mathrm{I}_{\mathrm{z} \omega \mathrm{c}} \cdot \mathrm{I}_{\mathrm{y}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{I}_{\mathrm{y} \omega c}\right)}{(}\right) .} \\
& y_{D} \rightarrow \frac{\mathrm{I}_{\mathrm{y} \omega \mathrm{c}}}{\mathrm{I}_{\mathrm{y}}} \quad \text { and } \ldots \quad \mathrm{z}_{\mathrm{D}} \rightarrow \frac{-\mathrm{I}_{\mathrm{z} \omega \mathrm{c}}}{\mathrm{I}_{\mathrm{z}}}
\end{aligned}
$$

