Lecture 3-2003

Kollbruner Section 5.2 Characteristics of Thin Walled Sections and .. Kollbruner Section 5.3 Bending without Twist

thin walled => (cross section shape arbitrary and thickness can vary)
axial stresses and shear stress along center of wall govern normal (to curved cross section) stress neglected
position determined by curvelinear coordinate s along center line of cross section
St. Venant torsion not a player as $K \sim t^{\wedge} 3$
use shear flow:

$$
\begin{aligned}
& z=>\zeta \\
& x=>
\end{aligned}
$$

a) equilibrium of wall element:

$\sigma \tau$

$$
\left[\sigma+\left(\frac{\mathrm{d}}{\mathrm{dx}} \sigma\right) \cdot \mathrm{dx}\right] \cdot \mathrm{t} \cdot \mathrm{ds}-\sigma \cdot \mathrm{t} \cdot \mathrm{ds}+\left(\mathrm{q}+\frac{\mathrm{d}}{\mathrm{ds}} \mathrm{q} \cdot \mathrm{ds}\right) \cdot \mathrm{dx}-\mathrm{q} \cdot \mathrm{dx}=0 \quad \begin{array}{ll}
& \text { using } \mathrm{q}=\tau \cdot \mathrm{t} \\
& \text { as it includes } \tau(\mathrm{s}) \text { and } \mathrm{t}(\mathrm{~s})
\end{array}
$$

$$
\frac{\mathrm{d}}{\mathrm{ds}} \mathrm{q}+\left(\frac{\mathrm{d}}{\mathrm{dx}} \sigma\right) \cdot \mathrm{t}=0
$$

b) compatibility (shear strain)

$$
\frac{\mathrm{d}}{\mathrm{ds}} \mathrm{u}+\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}=\gamma
$$

v is displacement in s direction u is displacement in x direction

X
view looking \perp to surface
c) tangential displacement (δv) in terms of η, ζ and ϕ

y component

rotation component
v is displacement in s direction η is displacement in y direction ζ is displacement in z direction and ϕ is rotation all at point s on cross section.
$\delta \mathrm{v}$ is differential over distance dx $\delta \eta$ is component of δv in y $\delta \zeta$ is component of $\delta \mathrm{v}$ in z direction
direction
and $\mathrm{hp}{ }^{*} \delta \phi$ is component due to differential rotation between x and x+dx
superposition =>

$$
d v=d \eta \cdot \cos (\alpha)+d \zeta \cdot \sin (\alpha)+h_{\mathrm{p}} \cdot d \phi
$$

η, ζ and ϕ depend on s and x while α and hp are independent of x (prismatic section) rewrite as:

$$
\frac{\delta \mathrm{v}}{\delta \mathrm{x}}=\frac{\delta \eta}{\delta \mathrm{x}} \cdot \cos (\alpha)+\frac{\delta \zeta}{\delta \mathrm{x}} \cdot \sin (\alpha)+\mathrm{h}_{\mathrm{p}} \cdot \frac{\delta \phi}{\delta \mathrm{x}}
$$

further assumptions:

1) preservation of cross section shape $=>\zeta=\zeta(x) ; \eta=\eta(x) \phi=\phi(x)$
2) shear though finite is small $\sim 0 \Rightarrow \frac{d}{d s} u=-\left(\frac{d}{d x} v\right)$
3) Hooke's law holds $\Rightarrow>=E \cdot \frac{\delta u}{\delta x}$ axial stress
equilibrium for the cross section:

$$
\begin{aligned}
& \int \sigma d A=N_{x} \\
& \int \sigma \cdot y d A=-M_{z} \\
& \int \sigma \cdot z d A=M_{y} \\
& \int \tau \cdot h_{p} d A=\int q \cdot h_{p} d s=T_{p} \\
& \int \tau \cdot \cos (\alpha) d A=\int q \cdot \cos (\alpha) d s=V_{y} \\
& \int \tau \cdot \sin (\alpha) d A=\int q \cdot \sin (\alpha) d s=V_{Z} \\
& \text { Nx = axial force } \\
& \mathrm{Mz} \text { and My are bending moments wrt } \mathrm{y} \text { and } \\
& \text { z respectively } \\
& \text { note integral expressions } \\
& \text { Tp is torsional moment wrt cross sectional } \\
& \text { point } P \\
& \text { Qx and Qy shear forces }
\end{aligned}
$$

5.3 Bending without twist

$$
\int \sigma \mathrm{dA}=0 \quad \int \mathrm{q} \cdot \mathrm{~h}_{\mathrm{p}} \mathrm{ds}=0 \quad \begin{aligned}
& \text { possible only if lateral loads pass } \\
& \text { through } \mathrm{P}
\end{aligned}
$$

$\frac{\delta v}{\delta x}=\frac{\delta \eta}{\delta x} \cdot \cos (\alpha)+\frac{\delta \zeta}{\delta x} \cdot \sin (\alpha)+h_{p} \cdot \frac{\delta \phi}{\delta x}$ from above,
using $\frac{\mathrm{d}}{\mathrm{ds}} \mathrm{u}=-\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}\right)$ with no twist $=>\frac{\delta \phi}{\delta \mathrm{x}}=0$
becomes: $\frac{\delta u}{\delta s}=-\frac{d \eta}{d x} \cdot \cos (\alpha)-\frac{d \zeta}{d x} \cdot \sin (\alpha)$ which can be integrated to become:
$u=-\eta^{\prime} \cdot \int \cos (\alpha) d s-\zeta^{\prime} \cdot \int \sin (\alpha) d s+u_{0}(x)$ where $\frac{d \zeta}{d x}=\zeta^{\prime} \quad$ (prime is control F7)
and $\frac{\delta \eta}{\delta x}$ is η^{\prime}, and comes outside the integral due to our prismatic assumption
$d Y(=d y)=d s^{*} \cos (\alpha), d Z(=d z)=d s^{*} \sin (\alpha)$,
where Y and Z refer to a coordinate system with an arbitrary origin, whereas x and y are defined centroidal (refer to center of area) =>

$$
\begin{aligned}
& u(x)=-\eta^{\prime} \cdot \int 1 d Y-\zeta^{\prime} \cdot \int 1 d Z+u_{0}(x) \\
& u=-\eta^{\prime} \cdot Y-\zeta^{\prime} \cdot Z+u_{0}(x)
\end{aligned}
$$

Z, ζ
which says longitudinal displacement u is distributed linearly across cross section (plane sections remain plane)
u_{0} is the constant of integration which is $f(x)$

$$
\text { axial strain }=d u / d x=>\quad u^{\prime}=-\eta^{\prime \prime} \cdot Y--\zeta^{\prime \prime} \cdot Z+u^{\prime}(z) \text { and }
$$

$$
\sigma=\mathrm{E} \cdot \mathrm{u}^{\prime}=-\mathrm{E} \cdot \eta^{\prime \prime} \cdot \mathrm{Y}-\zeta^{\prime \prime} \cdot \mathrm{Z}+\mathrm{E} \cdot \mathrm{u}_{0}^{\prime}(\mathrm{z})
$$

now with $\int \sigma \mathrm{dA}=0$

$$
\begin{aligned}
& \int \sigma d A=\int E \cdot u^{\prime} d a=-\int E \cdot \eta^{\prime \prime} \cdot Y d A-\int E \cdot \zeta^{\prime \prime} \cdot Z d A+\int E \cdot u_{0}^{\prime}(z) d A=0 \quad=> \\
& -E \cdot \eta^{\prime \prime} \cdot \int Y d A-E \cdot \zeta^{\prime \prime} \cdot \int Z d A+E \cdot u_{0}^{\prime}(z) \cdot \int 1 d A=0 \quad \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& E \cdot u^{\prime}(z)=E \cdot \eta^{\prime \prime} \cdot \frac{\int Y^{\prime} d A}{A}+E \cdot \zeta \zeta^{\prime} \cdot \int Z d A \quad \text { determines } E \cdot u_{0}^{\prime}(z) \text { in stress } \sigma=> \\
& \sigma=-E \cdot \eta^{\prime \prime} \cdot Y--E \cdot \zeta^{\prime \prime} \cdot Z+E \cdot \eta^{\prime \prime} \cdot \frac{\int Y d A}{A}+E \cdot \zeta \prime \cdot \frac{\int Z d A}{A} \\
& \sigma=-\mathrm{E} \cdot \eta^{\prime \prime} \cdot\left(\mathrm{Y}-\frac{(\mathrm{YdA} \mid}{\mathrm{A}}\right)^{--\mathrm{E} \cdot \zeta^{\prime \prime} \cdot\left(\mathrm{Z}-\frac{(\mathrm{ZdA} \mid}{\mathrm{A}}\right)} \\
& \text { rearranged becomes } \\
& \text { but } \\
& \frac{\int \mathrm{YdA}}{\mathrm{~A}} \text { is the definition of the y position of the centroid and } \frac{\int \mathrm{ZdA}}{\mathrm{~A}} \text { the z position => } \\
& y=Y-\frac{\int Y d A}{A} \text { and } z=Z-\frac{\int Z d A}{A} \quad \text { and } \sigma=-E \cdot \eta " \cdot y-E \cdot \zeta^{\prime \prime} \cdot z
\end{aligned}
$$

where y and z are the position of the point s in the centroidal coordinate system.

$$
\begin{gathered}
\eta^{\prime \prime} \text { and } \zeta^{\prime \prime} \text { are determined by the equilibrium conditions } \\
\int \sigma \cdot y \mathrm{dA}=-\mathrm{M}_{\mathrm{z}} \quad \int \sigma \cdot \mathrm{zdA}=\mathrm{M}_{\mathrm{y}} \quad \sigma=-\mathrm{E} \cdot \eta^{\prime \prime} \cdot \mathrm{y}-\mathrm{E} \cdot \zeta^{\prime \prime} \cdot \mathrm{z} \\
\int \sigma \cdot \mathrm{ydA}=\int\left(-\mathrm{E} \cdot \eta^{\prime \prime} \cdot \mathrm{y}-\mathrm{E} \cdot \zeta^{\prime \prime} \cdot \mathrm{z}\right) \cdot \mathrm{ydA}=-\mathrm{E} \cdot \eta^{\prime \prime} \cdot\left(\int \mathrm{y} \cdot \mathrm{ydA} \cdot-\mathrm{E} \cdot \zeta^{\prime \prime} \cdot\left(\int \mathrm{z} \cdot \mathrm{ydA}=-\mathrm{M}_{\mathrm{z}}\right.\right.
\end{gathered}
$$

$$
\int \sigma \cdot z d A=\int\left(-E \cdot \eta^{\prime \prime} \cdot y-E \cdot \zeta^{\prime \prime} \cdot z\right) \cdot z d A=-E \cdot \eta " \int y \cdot z d A-E \cdot \zeta^{\prime \prime} \int z \cdot z d A=M_{y}
$$

noting that $\int z \cdot z d A=l y, \int z \cdot y d A=l y z$ and $\int y \cdot y d A=l z$ and solving the two equations for two unknowns E• η " and $\mathrm{E} \cdot \zeta^{\prime \prime}$ leads to =>

Given

$$
-\mathrm{E} \mathrm{\eta} " \cdot \mathrm{I}_{\mathrm{z}}-\mathrm{E} \zeta^{\prime} \cdot \mathrm{I}_{\mathrm{yz}}=-\mathrm{M}_{\mathrm{z}}
$$

$$
-E \eta " \cdot \mathrm{I}_{\mathrm{yz}}-\mathrm{E} \zeta " \cdot \mathrm{I}_{\mathrm{y}}=\mathrm{M}_{\mathrm{y}} \quad \text { solving two equations two unknowns }
$$

$$
\operatorname{Find}\left(E \eta^{\prime \prime}, \mathrm{E} \zeta^{\prime \prime}\right) \rightarrow\binom{\frac{\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{y}}+\mathrm{M}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{y}}}{{ }^{2}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}}}{\frac{-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{z}}-\mathrm{M}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}}{-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}}}
$$

$$
E \eta^{\prime \prime}:=\frac{\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{y}}+\mathrm{M}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{y}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \quad \mathrm{E} \zeta^{\prime}:=\frac{\left(-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{z}}-\mathrm{M}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \quad \quad \text { reversed signs }
$$

now substituting back into the relation for axial stress ($\sigma:=-$ E. η ".y $-\mathrm{E} \cdot \zeta \cdot \mathrm{F} \cdot \mathrm{z}$) $=>$

$$
\begin{aligned}
& \sigma:=-\mathrm{E} \eta=\cdot \mathrm{y}-\mathrm{E} \zeta \cdot \mathrm{z} \\
& \sigma \rightarrow \frac{-\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{y}}+\mathrm{M}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{y}}\right)}{-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot \mathrm{y}-\frac{-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{z}}-\mathrm{M}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}}{-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot \mathrm{z}
\end{aligned}
$$

or rearranging in terms of My and $\mathrm{Mz}=>$

$$
\sigma:=\frac{\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{y}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{z}\right) \cdot \mathrm{M}_{\mathrm{z}}+\left(\mathrm{I}_{\mathrm{z}} \cdot \mathrm{z}-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{y}\right) \cdot \mathrm{M}_{\mathrm{y}}}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)}
$$

as a check on this development let:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{yz}}:=0 \text { and } \quad \sigma:=\frac{-\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{y}}+\mathrm{M}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{y}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot \mathrm{y}-\frac{\left(-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{z}}-\mathrm{M}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot \mathrm{z} \\
& \sigma \rightarrow \frac{-\mathrm{M}_{\mathrm{z}}}{\mathrm{I}_{\mathrm{z}}} \cdot \mathrm{y}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{y}}} \cdot \mathrm{z} \quad \text { which matches our previous understanding on bending }
\end{aligned}
$$

c) Shear Stress

integration of $\frac{d}{d s} q+\left(\frac{d}{d x} \sigma\right) \cdot t=0$ (the equilibrium relationship above) along s leads to :

$$
\mathrm{q}(\mathrm{~s}, \mathrm{x})=\mathrm{q}_{1}(\mathrm{x})-\int_{0}^{\mathrm{s}}\left(\frac{\mathrm{~d}}{\mathrm{dx}} \sigma\right) \cdot \mathrm{tds} \quad \begin{aligned}
& \text { where } \mathrm{q}_{1}(\mathrm{x}) \text { is } \mathrm{f}(\mathrm{x}) \text { and represents the shear flow } \\
& \text { at the start of the region. it is } 0 \text { at a stress free } \\
& \text { boundary which is convenient for an open } \\
& \text { section: }
\end{aligned}
$$

$$
\mathrm{q}_{1}(\mathrm{x})=0
$$

$$
\frac{\mathrm{d}}{\mathrm{dx}} \sigma=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{-\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{y}}+\mathrm{M}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{y}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot \mathrm{y}-\frac{\left(-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{z}}-\mathrm{M}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot \mathrm{z}\right]
$$

where only My and Mz are x dependent and

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{M}_{\mathrm{z}}=\mathrm{V}_{\mathrm{y}} \text { and } \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{M}_{\mathrm{y}}=-\mathrm{V}_{\mathrm{z}}=>
$$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{z}}(\mathrm{x}):=\mathrm{V}_{\mathrm{y}} \cdot \mathrm{x} \quad \mathrm{M}_{\mathrm{y}}(\mathrm{x}):=-\mathrm{V}_{\mathrm{z}} \cdot \mathrm{x} \quad \mathrm{I}_{\mathrm{yz}}:=\mathrm{I}_{\mathrm{yz}} \\
& \frac{\mathrm{~d}}{\mathrm{dx}}\left[\frac{-\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{y}}(\mathrm{x})+\mathrm{M}_{\mathrm{z}}(\mathrm{x}) \cdot \mathrm{I}_{\mathrm{y}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot \mathrm{y}-\frac{\left(-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{M}_{\mathrm{z}}(\mathrm{x})-\mathrm{M}_{\mathrm{y}}(\mathrm{x}) \cdot \mathrm{I}_{\mathrm{z}}\right)}{\left(-\mathrm{I}{ }^{2}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)}\right] \rightarrow \frac{\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{z}}-\mathrm{V}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{y}}}{-\mathrm{I}}{ }^{2}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}
\end{aligned} \mathrm{y}-\frac{-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{y}}+\mathrm{V}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{z}}}{-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot \mathrm{z} .
$$

copy and substitute

$$
\begin{gathered}
\mathrm{q}(\mathrm{~s}, \mathrm{x})=-\int_{0}^{\mathrm{s}}\left(\frac{\mathrm{~d}}{\mathrm{dx}} \sigma\right) \cdot \mathrm{tds}=-\int_{0}^{\mathrm{s}}\left[\frac{\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{z}}-\mathrm{V}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{y}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot \mathrm{y}-\frac{\left(-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{y}}+\mathrm{V}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{z}}\right)}{\left(-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot \mathrm{z}\right] \cdot \mathrm{tds} \\
\mathrm{q}(\mathrm{~s}, \mathrm{x})=\frac{-1}{-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot\left[\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{z}}-\mathrm{V}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{y}}\right) \cdot \int_{0}^{\mathrm{s}} \mathrm{y} \cdot \mathrm{tds}-\left(-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{y}}+\mathrm{V}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{z}}\right) \cdot \int_{0}^{\mathrm{s}} \mathrm{z} \cdot \mathrm{tds}\right]
\end{gathered}
$$

if we designate the integrals which are the static moments of the cross section area: Qy and Qz:

$$
\mathrm{Q}_{\mathrm{z}}=\int_{0}^{\mathrm{s}} \mathrm{y} \cdot \mathrm{tds} \quad \mathrm{Q}_{\mathrm{y}}=\int_{0}^{\mathrm{s}} \mathrm{z} \cdot \mathrm{tds}
$$

$$
\mathrm{q}(\mathrm{~s}, \mathrm{x}):=\frac{-1}{-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot\left[\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{z}}-\mathrm{V}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{y}}\right) \cdot \mathrm{Q}_{\mathrm{z}}-\left(-\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{~V}_{\mathrm{y}}+\mathrm{V}_{\mathrm{z}} \cdot \mathrm{I}_{\mathrm{z}}\right) \cdot \mathrm{Q}_{\mathrm{y}}\right]
$$

or rearranging as we did for axial stress
$\mathrm{q}(\mathrm{s}, \mathrm{x})$ collect, $\mathrm{V}_{\mathrm{y}}, \mathrm{V}_{\mathrm{z}} \rightarrow \frac{-1}{-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{Q}_{\mathrm{z}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{y}}-\frac{1}{-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{z}}-\mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{z}}$

$$
\mathrm{q}(\mathrm{~s}, \mathrm{x}):=\frac{-1}{\left(-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot\left[\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{z}}-\mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{z}}+\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{Q}_{\mathrm{z}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{y}}\right]
$$

or if the axes are principal (Ixy =0)

$$
\mathrm{I}_{\mathrm{yz}}:=0
$$

$\mathrm{q}(\mathrm{s}, \mathrm{x}):=\frac{-1}{\left(-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot\left[\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{z}}-\mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{z}}+\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{Q}_{\mathrm{z}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{y}}\right]$
$\mathrm{q}(\mathrm{s}, \mathrm{x})$ simplify collect , $\mathrm{Q}_{\mathrm{y}} \rightarrow \frac{\mathrm{V}_{\mathrm{z}}}{\mathrm{I}_{\mathrm{y}}} \cdot \mathrm{Q}_{\mathrm{y}}+\mathrm{Q}_{\mathrm{z}} \cdot \frac{\mathrm{V}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{z}}} \quad \mathrm{q}(\mathrm{s}, \mathrm{x}):=\left(\frac{\mathrm{Q}_{\mathrm{y}} \cdot \mathrm{V}_{\mathrm{z}}}{\mathrm{I}_{\mathrm{y}}}+\frac{\mathrm{Q}_{\mathrm{z}} \cdot \mathrm{V}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{z}}}\right) \quad \mathrm{I}_{\mathrm{yz}}:=0$

d) Shear Center

the above relationships apply for bending without twist i.e. when

$$
\begin{aligned}
& \int \sigma \mathrm{dA}=0 \quad \int \mathrm{q} \cdot \mathrm{~h}_{\mathrm{p}} \mathrm{ds}=0 \quad \begin{array}{l}
\text { possible only if lateral loads pass } \\
\text { through } \mathrm{P}
\end{array} \\
& \mathrm{q} \rightarrow \frac{-1}{-\mathrm{I}_{\mathrm{zy}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \cdot\left[\left(\mathrm{I}_{\mathrm{zy}} \cdot \mathrm{Q}_{\mathrm{z}}-\mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{z}}+\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{Q}_{\mathrm{z}}+\mathrm{I}_{\mathrm{zy}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{y}}\right] \quad \begin{array}{l}
\text { from above (reset in hidden } \\
\text { area }
\end{array}
\end{aligned}
$$

this point P was designated (by Maillart in 1921, see page 106 Kollbrunner) as the shear center. In the centroidal coordinate system, this is located at y_{D} and z_{D}. the second condition applies for a shear force V . The center of action must pass through P . Divide Q into components Vy and Vz
thus from (Qy), the moment the moment equilibrium wrt C (in centroidal coordinates)
is:

$$
\begin{aligned}
& \int \mathrm{q}\left(\mathrm{~V}_{\mathrm{y}}\right) \cdot \mathrm{h}_{\mathrm{c}} \mathrm{ds}+\mathrm{V}_{\mathrm{y}} \cdot \mathrm{z}_{\mathrm{D}}=0 \\
& \int \mathrm{q}\left(\mathrm{~V}_{\mathrm{y}}\right) \cdot \mathrm{h}_{\mathrm{c}} \mathrm{ds}=-\mathrm{V}_{\mathrm{y}} \cdot \mathrm{z}_{\mathrm{D}}
\end{aligned}
$$

$q\left(V_{y}\right)$ is q with $V z$ set to 0 and hc is Z perpendicular distance from centroid to line of action (i.e. $y(s)$ and $z(s))$.

$$
\begin{aligned}
& \text { set } \quad V_{z}:=0 \quad \text { reset } \quad q:=\frac{-1}{\left(-\mathrm{I}_{\mathrm{yz}}^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot\left[\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{z}}-\mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{z}}+\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{Q}_{\mathrm{z}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{y}}\right] \\
& q \rightarrow \frac{-1}{-I_{z y}^{2}+I_{y} \cdot I_{z}} \cdot\left(-I_{y} \cdot Q_{z}+I_{z y} \cdot Q_{y}\right) \cdot V_{y} \quad \quad \text { substitute } \\
& \int q\left(V_{y}\right) \cdot h_{c} d s=-V_{y} \cdot z_{D}=\int \frac{-1}{\left(-I_{z y}^{2}+I_{y} \cdot I_{z}\right)} \cdot\left(-I_{y} \cdot Q_{z}+I_{z y} \cdot Q_{y}\right) \cdot V_{y} \cdot h_{c} d s \\
& -V_{y} \cdot z_{D}=\frac{-V_{y}}{\left(-I_{z y}^{2}+I_{y} \cdot I_{z}\right)}\left[\int\left(-I_{y} \cdot Q_{z}+I_{z y} \cdot Q_{y}\right) \cdot h_{c} d s\right] \\
& \text { or ... } \\
& \mathrm{Z}_{\mathrm{D}}=\frac{1}{\left(-\mathrm{I}_{\mathrm{zy}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot\left[\int\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{Q}_{\mathrm{z}}+\mathrm{I}_{\mathrm{zy}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot h_{\mathrm{c}} \mathrm{ds}\right]=\frac{-\mathrm{I}_{\mathrm{y}} \cdot \int \mathrm{Q}_{\mathrm{z}} \cdot \mathrm{~h}_{\mathrm{c}} \mathrm{ds}+\mathrm{I}_{\mathrm{zy}} \cdot \int \mathrm{Q}_{\mathrm{y}} \cdot h_{\mathrm{c}} \mathrm{ds}}{-\mathrm{I}_{\mathrm{zy}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}} \\
& \text { moment from V.z } \\
& \int \mathrm{q}\left(\mathrm{~V}_{\mathrm{z}}\right) \cdot \mathrm{h}_{\mathrm{c}} \mathrm{ds}-\mathrm{V}_{\mathrm{z}} \cdot \mathrm{y}_{\mathrm{D}}=0 \quad \quad \quad \mathrm{q}\left(\mathrm{~V}_{\mathrm{z}}\right) \cdot h_{\mathrm{c}} \mathrm{ds}=\mathrm{V}_{\mathrm{z}} \cdot \mathrm{y}_{\mathrm{D}}
\end{aligned}
$$

$\mathrm{q}\left(\mathrm{V}_{\mathrm{z}}\right)$ is q with Vy set to 0 and hc is perpendicular distance from centroid to line of action (i.e. $y(s)$ and $z(s)$).
reset

$$
\begin{aligned}
& \text { reset } \quad \mathrm{V}_{\mathrm{z}}:=\mathrm{V}_{\mathrm{z}} \quad \text { set } \quad \mathrm{V}_{\mathrm{y}}:=0 \quad \mathrm{q}:=\frac{-1}{\left(-\mathrm{I}_{\mathrm{yz}}{ }^{2}+\mathrm{I}_{\mathrm{y}} \cdot \mathrm{I}_{\mathrm{z}}\right)} \cdot\left[\left(\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{z}}-\mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{z}}+\left(-\mathrm{I}_{\mathrm{y}} \cdot \mathrm{Q}_{\mathrm{z}}+\mathrm{I}_{\mathrm{yz}} \cdot \mathrm{Q}_{\mathrm{y}}\right) \cdot \mathrm{V}_{\mathrm{y}}\right] \\
& q \rightarrow \frac{-1}{-I_{z y}^{2}+I_{y} \cdot I_{z}} \cdot\left(I_{z y} \cdot Q_{z}-I_{z} \cdot Q_{y}\right) \cdot V_{z} \quad \quad \text { substitute } \\
& \int q\left(V_{z}\right) \cdot h_{c} d s=V_{z} \cdot y_{D}=\int \frac{-1}{\left(-I_{z y}^{2}+I_{y} \cdot I_{z}\right)} \cdot\left(I_{z y} \cdot Q_{z}-I_{z} \cdot Q_{y}\right) \cdot V_{z} \cdot h_{c} d s \\
& V_{z} \cdot y_{D}=\int \frac{-1}{\left(-I_{z y}^{2}+I_{y} \cdot I_{z}\right)} \cdot\left(I_{z y} \cdot Q_{z}-I_{z} \cdot Q_{y}\right) \cdot V_{z} \cdot h_{c} d s=\frac{-V_{z}}{\left(-I_{z y}^{2}+I_{y} \cdot I_{z}\right)} \cdot\left(I_{z y} \cdot \int Q_{z} \cdot h_{c} d s-I_{z} \cdot \int Q_{y} \cdot h_{c} d s\right) \\
& y_{D}=\frac{-1}{\left(-I_{z y}^{2}+I_{y} \cdot I_{z}\right)} \cdot\left(I_{z y} \cdot \int Q_{z} \cdot h_{c} d s-I_{z} \cdot \int Q_{y} \cdot h_{c} d s\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { for principal axes }(\mathrm{lyz}=0): \quad \mathrm{I}_{\mathrm{zy}}:=0 \\
& y_{D}:=\frac{-1}{\left(-I_{z y}^{2}+I_{y} \cdot I_{z}\right)} \cdot\left(I_{z y} \cdot \int Q_{z} \cdot h_{c} d s-I_{z} \cdot \int Q_{y} \cdot h_{c} d s\right){ }_{z D}:=\frac{-I_{y} \cdot \int Q_{z} \cdot h_{c} d s+I_{z y} \cdot \int Q_{y} \cdot h_{c} d s}{-I_{z y}{ }^{2}+I_{y} \cdot I_{z}} \\
& y_{D}=\frac{\int Q_{y} \cdot h_{c} d s}{I_{y}} \\
& \mathrm{z}_{\mathrm{D}}=\frac{-\int \mathrm{Q}_{\mathrm{Z}} \cdot h_{\mathrm{c}} \mathrm{ds}}{\mathrm{I}_{\mathrm{z}}}
\end{aligned}
$$

