13.122 Lecture 1 Primary Load: Bending Moment and Shear Force

Introduction to course:
Design process
Structural design process

General course content:
13.122 Ship Structural Design
A. Loads on ship/offshore platforms

Calculation of loads
buoyancy, shear, bending moment
"hand" using excel
B. Review of bending, shear and torsion - open sections
C. Modeling a structure

Maestro
checking loads and moments
D. Development of limit states and failure modes
stress analysis of ship/ocean system structure
E. Design of section for bending
project
F. Matrix analysis (Grillage), FEM Introduction

Expected outcome: an ability to effectively use structural design tools with an understanding of the underlying analysis.

Changes from previous years:
reduced 13.10 review (2002)
calculation of loads (bending moment and shear force) (2001)
introduce Maestro earlier for modeling and load analysis (2001)
introduce open section torsion
revert to earlier problem sets for mathcad limit state analysis (2001)

Sign Convention

In general, we will use "structural" sign convention described in Shames: 10.2 page 286

An axial force or bending moment acting on a beam cross-section is positive if it acts on a positive face and is directed in a positive coordinate direction. The shear force is positive if it acts in the negative direction on a positive face.
(positive face defined by outward normal in positive coordinate direction)

Moment of inertia is defined relative to the axis for measuring distance: $I_{Z}=\int y^{2} d A ; I_{y}=\int z^{2} d A$

$T=M x$

$$
\sigma_{\mathrm{x}}=\tau_{\mathrm{xx}} \quad \tau_{\mathrm{xy}}=\tau_{\mathrm{yx}} \quad \text { etc. }
$$

$$
\sigma_{\mathrm{x}}=\frac{-\mathrm{M}_{\mathrm{z}} \cdot \mathrm{y}}{\mathrm{I}_{\mathrm{z}}}
$$

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{y}} \cdot \mathrm{z}}{\mathrm{I}_{\mathrm{y}}} \quad \text { later } \ldots .
$$

define $f=$ load, positive in $+y$ direction,

$$
\begin{aligned}
& d Q=f \cdot d x \\
& Q=\int_{0}^{x} f(x) d x+Q(x=0)=\int_{0}^{x} f(x) d x
\end{aligned}
$$

moments around right face =>

$$
\begin{aligned}
& M+Q \cdot d x+f(x) \cdot d x \cdot \frac{d x}{2}-M+d M=0 \quad \Rightarrow \quad Q=\frac{d}{d x} M \\
& M(x)=\int_{0}^{x} Q(x) d x+M(x=0)=\int_{0}^{x} Q(x) d x
\end{aligned}
$$

Part 1: Calculation of loads

buoyancy, shear, bending moment

a) shear and bending moment from distributed force per length
b) shear and bending moment from point force
c) algorithms for calculation

a) shear and bending moment from distributed force per length

suppose we have a distribution of weight per foot w, constant over a distance $\xi_{0}=>\xi_{1}$
mathcad has an expression that handles the < and > relationships:
$a>b=1$ if true, 0 if false
$\mathrm{a}:=1$
$\mathrm{b}:=2$
$\mathrm{a}>\mathrm{b}=0$
$\mathrm{b}>\mathrm{a}=1$
for example: for $\mathrm{i}:=3$ and $\mathrm{x}:=0,0.1 . .6$

$$
\left.\begin{array}{cc}
\text { weight per foot } & \text { between } \xi_{\mathrm{i}, 0}=>\xi_{\mathrm{i}, 1} \\
\mathrm{w}:=\left(\begin{array}{c}
1 \\
2 \\
-3 \\
2 \\
1
\end{array}\right) & \xi:=\left(\left.\begin{array}{ll}
0 & 1 \\
1 & 2 \\
2 & 4 \\
4 & 5
\end{array} \right\rvert\,\right. \\
5 & 6
\end{array}\right) .
$$

$\mathrm{w} _\operatorname{plot}(\mathrm{x}):=\mathrm{w}_{\mathrm{i}} \cdot\left(\xi_{\mathrm{i}, 0}<\mathrm{x} \leq \xi_{\mathrm{i}, 1}\right)$
by superposition: for $\mathrm{i}:=0 . .4$

$$
\mathrm{w} _ \text {plot }(\mathrm{x}):=\sum_{\mathrm{i}=0}^{4} \mathrm{w}_{\mathrm{i}} \cdot\left(\xi_{\mathrm{i}, 0}<\mathrm{x} \leq \xi_{\mathrm{i}, 1}\right)
$$

what is shear force from w_{i} ?

$$
\operatorname{shear}(\mathrm{x}):=\int_{0}^{\mathrm{x}} \mathrm{w}_{\mathrm{i}}(\xi) \mathrm{d} \xi \mathrm{c}=\begin{array}{cc}
0 & \xi_{\mathrm{i}, 0}>\mathrm{x} \\
& \mathrm{w}_{\mathrm{i}} \cdot\left(\mathrm{x}-\xi_{\mathrm{i}, 0}\right) \\
\mathrm{w}_{\mathrm{i}} \cdot\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right) & \mathrm{x}>\xi_{\mathrm{i}, 0}<\mathrm{x} \leq \xi_{\mathrm{i}, 1}
\end{array}
$$

for example: $\mathrm{i}:=2$
$\operatorname{shear}(\mathrm{x}):=\mathrm{w}_{\mathrm{i}} \cdot\left(\mathrm{x}-\xi_{\mathrm{i}, 0}\right) \cdot\left(\xi_{\mathrm{i}, 0}<\mathrm{x} \leq \xi_{\mathrm{i}, 1}\right)+\mathrm{w}_{\mathrm{i}} \cdot\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right) \cdot\left(\mathrm{x}>\xi_{\mathrm{i}, 1}\right)$

$\operatorname{shear}(x):=\sum_{i=1 l}^{u l}\left[w_{i} \cdot\left(x-\xi_{i, 0}\right) \cdot\left(\xi_{i, 0}<x \leq \xi_{i, 1}\right)+w_{i} \cdot\left(\xi_{i, 1}-\xi_{i, 0}\right) \cdot\left(x>\xi_{i, 1}\right)\right]$

for later comparison, let's rename this $\operatorname{shear}_{1}(x):=\operatorname{shear}(x)$ note that shear curve starts and ends at 0 ; why??

$$
\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \cdot\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right)=0
$$

now what is bending moment from weight per foot as above?

$$
\begin{aligned}
& \text { bending_moment }(\mathrm{x}):=\int_{0}^{\mathrm{x}} \text { shear }(\xi) \mathrm{d} \xi= \\
& \int_{0}^{\mathrm{x}}\left[\mathrm{w}_{\mathrm{i}} \cdot\left(\mathrm{x}-\xi_{\mathrm{i}, 0}\right) \cdot\left(\xi_{\mathrm{i}, 0}<\mathrm{x} \leq \xi_{\mathrm{i}, 1}\right)+\mathrm{w}_{\mathrm{i}} \cdot\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right) \cdot\left(\mathrm{x}>\xi_{\mathrm{i}, 1}\right)\right] \mathrm{d} \xi \\
& =0 \text { when } ; \mathrm{x}<\xi_{\mathrm{i}, 0} \\
& =\mathrm{w}_{\mathrm{i}} \cdot\left[\left(\frac{\mathrm{x}^{2}}{2}-\xi_{\mathrm{i}, 0} \cdot \mathrm{x}\right)^{2}-\left[\frac{\left(\xi_{\mathrm{i}, 0}\right)^{2}}{2}-\left(\xi_{\mathrm{i}, 0}\right)^{2}\right]\right] \text { when } \xi_{\mathrm{i}, 0}<\mathrm{x}<\xi_{\mathrm{i}, 1} \text { or }:=\frac{\mathrm{w}_{\mathrm{i}}}{2} \cdot\left(\mathrm{x}-\xi_{\mathrm{i}, 0}\right)^{2} \text { after simplifying } \\
& =\left[\frac{w_{i}}{2} \cdot\left(\mathrm{x}-\xi_{\mathrm{i}, 0}\right)^{2}\right] \cdot\left(\xi_{\mathrm{i}, 0}<\mathrm{x} \leq \xi_{\mathrm{i}, 1}\right) \text { using the notation above. }
\end{aligned}
$$

$$
\text { and }=w_{i} \cdot\left[\left(\xi_{i, 1}-\xi_{i, 0}\right) \cdot\left(x-\xi_{i, 1}\right)+\frac{1}{2} \cdot\left(\xi_{i, 1}-\xi_{i, 0}\right) \cdot\left(\xi_{i, 1}-\xi_{i, 0}\right)\right] \cdot\left(x>\xi_{i, 1}\right) \text { when } \quad x>\xi_{i, 1}
$$

$$
\text { simplifying }=>\quad\left(\frac{x^{2}}{2}-\xi_{i, 0} \cdot x\right)-\left[\frac{\left(\xi_{\mathrm{i}, 0}\right)^{2}}{2}-\left(\xi_{\mathrm{i}, 0}\right)^{2}\right]=\frac{x^{2}}{2}-\xi_{\mathrm{i}, 0} \cdot x+\frac{\left(\xi_{\mathrm{i}, 0}\right)^{2}}{2}=\frac{1}{2} \cdot\left(x-\xi_{\mathrm{i}, 0}\right)^{2}
$$

therefore; bending moment $(x)=$ for lower limit: $11:=0$ and upper limit $=u l:=4$

$$
\text { bending_moment }(\mathrm{x}):=\sum_{\mathrm{i}=11}^{\mathrm{ul}}\left[\begin{array}{l}
\mathrm{w}_{\mathrm{i}}\left[\frac{1}{2} \cdot\left(\mathrm{x}-\xi_{\mathrm{i}, 0}\right)^{2}\right] \cdot\left(\xi_{\mathrm{i}, 0}<\mathrm{x} \leq \xi_{\mathrm{i}, 1}\right) \ldots \\
\left.+\mathrm{w}_{\mathrm{i}} \cdot\left[\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right) \cdot\left(\mathrm{x}-\xi_{\mathrm{i}, 1}\right)+\frac{1}{2} \cdot\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right) \cdot\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right)\right] \cdot\left(\mathrm{x}>\xi_{\mathrm{i}, 1}\right)\right]
\end{array}\right]
$$

for later comparison we will save this as bending_moment ${ }_{1}(\mathrm{x}):=$ bending_moment $^{(\mathrm{x})}$

b) shear and bending moment from point force

now consider if load is concentrated at a point between $\xi_{\mathrm{i}, 0}$ and $\xi_{\mathrm{i}, 1 ;}$
define $f_{i}:=w_{i}\left(\xi_{i, 1}-\xi_{i, 0}\right)$ when $x=x_{i}$ i. e. and we will define $x_{1}:=\frac{\left(\xi_{i, 1}+\xi_{i, 0}\right)}{2}$
this is not necessary as xx_{i} can be at any position (but usually between the end points).
In this case $\operatorname{shear}(\mathrm{x}):=\mathrm{f}_{\mathrm{i}} .\left(\mathrm{x} \geq \mathrm{xx}_{1}\right)$
for example: $i:=2 \quad x_{1}=3 \quad \operatorname{shear}(x):=f_{i} \cdot\left(x \geq x_{1}\right)$

as above total shear along beam with $11:=0$ and $u l:=4 \Rightarrow \operatorname{shear}(x):=\sum_{i=1 l}^{u l} f_{i} \cdot\left(x \geq x x_{1}\right)$
let's compare this version with the earlier weight per foot $\operatorname{shear}_{1}(\mathrm{x})$

now for bending moment: bending_moment $(x):=\int_{0}^{x} \operatorname{shear}(\xi) d \xi$; as above let's look first at bending moment from each component: $\operatorname{shear}(\mathrm{x}):=\mathrm{f}_{\mathrm{i}}\left(\mathrm{x} \geq \mathrm{xx}_{1}\right)$
bending_moment $(x):=\int_{0}^{x} f_{i} \cdot\left(x_{1} \geq x_{1}\right) d \xi=$ bending_moment $(x):=f_{i} \cdot\left(x-x_{1}\right) \cdot\left(x_{1} \geq x_{1}\right)$
plotting shear and bending moment for $\mathrm{i}:=0$; $\operatorname{shear}(\mathrm{x}):=\mathrm{f}_{\mathrm{i}} \cdot\left(\mathrm{x}_{\mathrm{x}} \mathrm{xx}_{1}\right)$ and bending_moment $(\mathrm{x}):=\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}-\mathrm{xx}_{\mathrm{i}}^{\mathrm{x}}\right) \cdot\left(\mathrm{x} \geq \mathrm{xx}_{1}\right)$

and as above total bending moment is the superposition of all components:
bending_moment $(x):=\sum_{i=11}^{u l} f_{i} \cdot\left(x-x_{1}\right) \cdot\left(x \geq x x_{1}\right)$ again comparing with the weight per foot from above

this doesn't look all that great, but we let a constant 3 span two intervals, what if we split it into two parts?

$$
\begin{array}{cc}
\text { weight per foot between } \xi_{\mathrm{i}, 0}=>\xi_{\mathrm{i}, 1} & \mathrm{i}:=0 . .5 \\
& 11:=0 \\
(1) & \left(\begin{array}{ll}
0 & 1
\end{array}\right)
\end{array}
$$

bending_moment $(x):=\sum_{i=11}^{u l} f_{i} \cdot\left(x-x_{i}\right) \cdot\left(x \geq x_{i}\right)$

$$
\mathrm{f}_{\mathrm{i}}:=\mathrm{w}_{\mathrm{i}} \cdot\left(\xi_{\mathrm{i}, 1}-\xi_{\mathrm{i}, 0}\right)
$$

problem: distribution of point loads along length, located at \sim midpoint between xi and xi+1

$$
\text { nsta }:=7
$$

$$
\mathrm{ul}:=\mathrm{nsta}-1 \quad \mathrm{ll}:=0 \quad \mathrm{j}:=0 . . \mathrm{ul}-1
$$

$$
\mathrm{f}:=\left(\begin{array}{c}
1 \\
2 \\
-3 \\
-3 \\
2 \\
1
\end{array}\right) \quad \mathrm{x}_{\mathrm{S}}:=\left(\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right) \quad \mathrm{xx}_{\mathrm{j}}:=\frac{\mathrm{x}_{\mathrm{s}}+\mathrm{x}_{\mathrm{s}_{\mathrm{j}+1}}}{2} \quad \mathrm{xx}=\left(\begin{array}{c}
0.5 \\
1.5 \\
2.5 \\
3.5 \\
6
\end{array}\right)
$$

$$
\begin{aligned}
\mathrm{x}:= & \mathrm{x}_{\mathrm{S}_{0}}, \mathrm{x}_{\mathrm{s}_{0}}+0.01 \ldots \mathrm{x}_{\mathrm{u}_{\mathrm{ul}}} \\
& \operatorname{shear}(\mathrm{x}):=\sum_{\mathrm{i}=11}^{\mathrm{ul}-1} \mathrm{f}_{\mathrm{i}} \cdot\left(\mathrm{x} \geq \mathrm{xx}_{\mathrm{i}}\right)
\end{aligned}
$$

can represent by values at endpoint of stations: eliminates ($x>x$ s) term
$\mathrm{s}_{0}:=0 \quad \mathrm{i}:=0 . . \mathrm{ul}-1 \quad \mathrm{~s}_{\mathrm{i}+1}:=\mathrm{s}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}}$

$$
\mathrm{s}=\left(\begin{array}{c}
0 \\
1 \\
3 \\
0 \\
-3 \\
-1
\end{array}\right) \quad \mathrm{x}_{\mathrm{S}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

bending moment algorithm: as above

$$
\mathrm{bm}=\int_{0}^{\mathrm{x}} \operatorname{shear}(\mathrm{x}) \mathrm{dx}
$$

$$
\operatorname{bm}\left(x^{=}=x_{S_{i}}\right)=\int_{0}^{x} \operatorname{shear}(x) d x=\int_{0}^{x_{\mathrm{S}_{i-1}}} \operatorname{shear}(x) d x+\int_{x_{S_{i-1}}}^{x_{S_{i}}} \operatorname{shear}(x) d x=\operatorname{bm}\left(x=x_{S_{i-1}}\right)+\int_{x_{S_{i-1}}}^{x_{\mathrm{S}_{\mathrm{i}}}} \operatorname{shear}(\mathrm{x}) \mathrm{dx}
$$

either model for shear =>

$$
\int_{x_{\mathrm{s}_{\mathrm{i}-1}}}^{\mathrm{x}_{\mathrm{S}_{\mathrm{i}}}} \operatorname{shear}(\mathrm{x}) \mathrm{dx}=\left(\operatorname{shear}\left(\mathrm{x}_{\mathrm{S}_{\mathrm{i}}}\right)+\operatorname{shear}\left(\mathrm{x}_{\mathrm{S}_{\mathrm{i}-1}}\right)\right) \cdot \frac{\left(\mathrm{x}_{\mathrm{s}_{\mathrm{i}}}-\mathrm{x}_{\mathrm{s}_{\mathrm{i}-1}}\right)}{2}=\left(\frac{\mathrm{s}_{\mathrm{i}-1}+\mathrm{s}_{\mathrm{i}}}{2}\right) \cdot\left(\mathrm{x}_{\mathrm{s}_{\mathrm{i}}}-\mathrm{x}_{\mathrm{s}_{\mathrm{i}-1}}\right)
$$

$=>$ in index form:

$$
\begin{aligned}
\mathrm{bm}_{0}:=0 \quad \mathrm{i}:=1 . .6 \quad \quad \mathrm{bm}_{\mathrm{i}}:=\mathrm{bm}_{\mathrm{i}-1}+\left(\frac{\mathrm{s}_{\mathrm{i}-1}+\mathrm{s}_{\mathrm{i}}}{2}\right) \cdot\left(\mathrm{x}_{\mathrm{s}_{\mathrm{i}}}-\mathrm{x}_{\mathrm{s}_{\mathrm{i}-1}}\right) \\
\mathrm{x}:=\mathrm{x}_{\mathrm{s}_{0}}, \mathrm{x}_{\mathrm{S}_{0}}+0.1 . . \mathrm{x}_{\mathrm{S}_{\mathrm{ul}}} \quad \operatorname{bbm}(\mathrm{x}):=\int_{0}^{\mathrm{x}} \operatorname{shear}(\mathrm{x}) \mathrm{dx} \quad \text { for comparison }
\end{aligned}
$$

this algorithm is amenable to iterative schemes such as could be done in excel:

load	station	shear	bending	
	location	force	moment	
	0	0	0	
1				
	1	1	0.5	
2				
	2	3	2.5	
-3				
	3	0	4	
-3	4	-3	2.5	
2	5	-1	0.5	
				0
1	6			

$$
\mathrm{s}=\left(\begin{array}{c}
0 \\
1 \\
3 \\
0 \\
-3 \\
-1
\end{array}\right) \quad \mathrm{bm}=\left(\begin{array}{c}
0 \\
0.5 \\
2.5 \\
4 \\
2.5 \\
0.5 \\
0
\end{array}\right)
$$

next we will develop the load from weight-buoyancy

