by symmetry ...

$$
\begin{array}{ll}
q 1=q 3=q 7=q 9 & \eta_{i i}=\sum_{j=1}^{4} \frac{s_{i j}}{t_{i j}} \quad \eta_{i k}=\frac{s_{i k}}{t_{i k}}
\end{array}
$$

$\eta_{1,1}:=4 \cdot \frac{\mathrm{a}}{\mathrm{t}} \quad \eta_{1,2}:=2 \cdot \frac{\mathrm{a}}{\mathrm{t}} \quad \begin{aligned} & \text { by symmetry } \mathrm{q} 4=\mathrm{q} 2 \text { so } q 1 \text { has } 2^{*} \mathrm{a} \\ & \text { length in common with q2 }\end{aligned}$
$\eta_{2,1}:=2 \cdot \frac{a}{t} \quad \eta_{2,2}:=4 \cdot \frac{a}{t} \quad \eta_{2,5}:=\frac{a}{t} \quad$ by symmetry $q 3=q 1$ so $q 2$ has $2^{*} a$ length in common with q1 1nd 1*a in common with q5
$\eta_{5,2}:=4 \cdot \frac{a}{t} \quad \eta_{5,5}:=4 \cdot \frac{\mathrm{a}}{\mathrm{t}}$
by symmetry q4=q6=q8=q2 so q5 has 4*a length in common with q2
we need to account for all the cells in calculating J or q from the known q_bar

$$
\mathrm{i}:=1 . .9
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\eta_{1,1} & -\eta_{1,2} & 0 \\
-\eta_{2,1} & \eta_{2,2} & -\eta_{2,5} \\
0 & -\eta_{5,2} & \eta_{5,5}
\end{array}\right) \cdot\binom{q-\mathrm{bar}_{1}}{q-\mathrm{bar}_{2}}=\binom{a^{2}}{q-\mathrm{bar}_{5}}=\binom{a^{2}}{a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { q_bar } \rightarrow\left(\begin{array}{c}
\frac{11}{16} \cdot a \cdot t \\
\frac{7}{8} \cdot a \cdot t \\
0 \\
0 \\
\frac{9}{8} \cdot a \cdot t
\end{array}\right)
\end{aligned}
$$

