Problem ...
A simply supported beam is subject to a distributed load $w=-w_{o} * \cos \left(2 \pi \frac{x}{L}\right)$

Figure shown below
a) Determine reaction forces at the ends
b) Plot shear-force and bending moment diagrams
c) Model the distributed load as a set of four concentrated loads determined by integrating over each quarter length. Locate the load at the mid length of each segment. I.e.

$$
F_{2}=\int_{\frac{L}{4}}^{\frac{L}{2}} w(x) d x \text { located at } x=\frac{3}{8} L
$$

Comment on the static equivalency of this model of the distributed load (is it equivalent in force and moment?)
d) Plot shear-force and bending moment diagram for this loading. Comment on the comparison with b) above.

Solution

$\mathrm{w}_{\mathrm{o}}:=1 \quad \mathrm{~L}:=10 \quad \mathrm{x}:=0,0.1 . . \mathrm{L} \quad \mathrm{w}(\mathrm{x}):=-\mathrm{w}_{\mathrm{o}} \cdot \cos \left(2 \cdot \pi \cdot \frac{\mathrm{x}}{\mathrm{L}}\right)$
as shown, w is positive up but negative in value

RL

$$
\begin{array}{ll}
\text { sum_forces }:=\int_{0}^{L} w(x) d x & \text { sum_forces }=0
\end{array} \quad R_{0}+R_{L}=0
$$

a)

$$
\mathrm{R}_{\mathrm{L}} \cdot \mathrm{~L}-\text { moment_wrt_R0 }=0
$$

$$
\mathrm{R}_{\mathrm{L}}:=0 \quad \mathrm{R}_{0}:=0
$$

b) equilibrium $\quad R_{0}+\int_{0}^{x} w(\xi) d \xi-V=0$

$$
\text { shear_force }(\mathrm{x}):=\int_{0}^{\mathrm{x}} \mathrm{w}(\xi) \mathrm{d} \xi
$$

hold this as
shear_force $1(x):=$ shear_force (x)
or \ldots analytically $w 1(x):=-w_{0} \cdot \cos (\quad$ shear_force (x)
shear_force $(x)=\int_{0}^{x} w 1(\xi) d \xi=-w_{0} \int_{0}^{x} \cos \left(2 \cdot \pi \cdot \frac{x}{L}\right) d \xi=-w_{0} \cdot \frac{L}{2 \cdot \pi} \cdot \sin \left(2 \cdot \pi \cdot \frac{x}{L}\right)$

equilibrium

$$
\mathrm{R}_{0}+\int_{0}^{\mathrm{x}} \mathrm{w}(\xi) \mathrm{d} \xi-\mathrm{V}=0 \quad \text { bending_moment }(\mathrm{x}):=\int_{0}^{\mathrm{x}} \text { shear_force }(\xi) \mathrm{d} \xi
$$

hold this as : bending_moment $1(x):=$ bending_moment (x)
or ... analytically:
bending_moment $(x)=\int_{0}^{x}$ shear_force $(\xi) d \xi=-w_{0} \cdot \frac{L}{2 \cdot \pi} \cdot\left(\int_{0}^{x} \sin \left(2 \cdot \pi \cdot \frac{x}{L}\right) d \xi\right)$
bending_moment $(\mathrm{x})=\mathrm{w}_{0} \cdot\left(\frac{\mathrm{~L}}{2}\right)^{2} \cdot\left(\cos \left(2 \cdot \pi \cdot \frac{\mathrm{x}}{\mathrm{L}}\right)-1\right) \quad$ the 1 is from the lower limit
bending_moment $(\mathrm{x})=\mathrm{w}_{\mathrm{o}} \cdot(\overline{2 \cdot \pi}) \cdot\left(\cos \left(2 \cdot \pi \cdot \frac{\mathrm{~L}}{\mathrm{~L}}\right)-1\right)$

c) model in segments: following the notation in the notes:

$$
\left.\begin{array}{rlrl}
\mathrm{i}:=0 . .3 & \mathrm{~L}=10 \\
\xi_{\mathrm{i}, 0}:=\mathrm{i} \cdot \frac{\mathrm{~L}}{4} & \quad \xi_{\mathrm{i}, 1}:=(\mathrm{i}+1) \cdot \frac{\mathrm{L}}{4} \quad \xi=\left(\begin{array}{cc}
0 & 2.5 \\
2.5 & 5 \\
5 & 7.5
\end{array}\right) \\
\mathrm{f}_{\mathrm{i}} & :=\int_{\xi_{\mathrm{i}, 0}}^{\xi_{\mathrm{i}, 1}} \mathrm{w}(\mathrm{x}) \mathrm{dx} & \mathrm{f}=\left(\begin{array}{c}
-1.592 \\
7.5 \\
1.592 \\
1.592
\end{array}\right) & \text { located at } \quad \mathrm{xx}_{\mathrm{i}}:=\frac{\xi_{\mathrm{i}, 1}+\xi_{\mathrm{i}, 0}}{2} \quad \mathrm{xx}=\left(\begin{array}{l}
1.25 \\
3.75 \\
6.25
\end{array}\right) \\
8.75
\end{array}\right)
$$

$\mathrm{x}:=0,0.1 \mathrm{~L} \quad \mathrm{Ll}:=0 \quad \mathrm{ul}:=3$
$\operatorname{shear}(\mathrm{x}):=\sum_{\mathrm{i}=11}^{\mathrm{ul}} \mathrm{f}_{\mathrm{i}} \cdot\left(\mathrm{x} \geq \mathrm{xx}_{\mathrm{i}}\right)$
plotted with value from distributed
shear (x)
shear_force1 (x)

bending_moment $(x):=\sum_{i=11}^{u l} f_{i} \cdot\left(x-x_{i}\right) \cdot\left(x \geq x_{i}\right)$

comment ... shear at the quarter points right on! bending moment a bit underestimated

about 20 \% low .. but with just 4 segments do the same but with 8 segments: (not expected)

$$
\begin{array}{ll}
\mathrm{i}:=0 . .7 & \mathrm{~L}=10 \\
\xi_{\mathrm{i}, 0}:=\mathrm{i} \cdot \frac{\mathrm{~L}}{8} &
\end{array}
$$

$$
\xi_{\mathrm{i}, 1}:=(\mathrm{i}+1) \cdot \frac{\mathrm{L}}{8} \quad \xi=\left(\begin{array}{cc}
2.5 & 3.75 \\
3.75 & 5 \\
5 & 6.25 \\
6.25 & 7.5 \\
7.5 & 8.75 \\
8.75 & 10
\end{array}\right)
$$

$\mathrm{f}_{\mathrm{i}}:=\int_{\xi_{\mathrm{i}, 0}}^{\xi_{\mathrm{i}, 1}} \mathrm{w}(\mathrm{x}) \mathrm{dx} \quad \mathrm{f}=\left(\begin{array}{c}-1.125 \\ -0.466 \\ 0.466 \\ 1.125 \\ 1.125 \\ 0.466 \\ -0.466 \\ -1.125\end{array}\right) \quad$ located at $\quad \mathrm{xx}_{\mathrm{i}}:=\frac{\xi_{\mathrm{i}, 1}+\xi_{\mathrm{i}, 0}}{2} \quad \mathrm{xx}=\left(\begin{array}{l}0.625 \\ 1.875 \\ 3.125 \\ 4.375 \\ 5.625 \\ 6.875 \\ 8.125\end{array}\right)$

$$
\mathrm{x}:=0,0.1 \ldots \mathrm{~L} \quad \mathrm{ll}:=0 \quad \mathrm{ul}:=7
$$

$$
\operatorname{shear}(\mathrm{x}):=\sum_{\mathrm{i}=11}^{\mathrm{ul}} \mathrm{f}_{\mathrm{i}} \cdot\left(\mathrm{x} \geq \mathrm{xx}_{\mathrm{i}}\right)
$$

plotted with value from distributed
$\operatorname{bending_ moment}(x):=\sum_{i=1 l}^{u l} f_{i} \cdot\left(x-x_{i}\right) \cdot\left(x \geq x_{i}\right)$

comment ... shear at the quarter points right on! bending moment a bit underestimated

$$
\frac{\text { bending_moment }\left(\frac{\mathrm{L}}{2}\right)}{\text { bending_moment }\left(\frac{\mathrm{L}}{2}\right)}=0.948 \quad \text { about } 5 \% \text { low .. with } 8 \text { segments }
$$

