2.081J/16.230J Plates and Shells

Homework \#2
Due date: class on Monday February 27

PROBLEM 1

(a) Consider a simply supported square $(a \times a)$ plate loaded by a uniform pressure q_{0}. Find an approximate solution, i.e. the relation between the load intensity q_{0} and the central deflection of the plate w_{0}. Use the Raleigh-Ritz method $(\delta \Pi=0)$ and try sinusoidal shape function. Moreover, the Gaussian curvature vanishes if the edge of the plate are straight.

$$
\begin{gathered}
\Pi=\frac{D}{2} \int_{S}\left(w,_{x x}+w, y y\right)^{2} d S-\int_{S} q w d S \\
w(x, y)=w_{0} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi y}{a}\right)
\end{gathered}
$$

(b) [Extra Credit] Derive an approximate solution for the clamped plate. Try this shape:

$$
w(x, y)=\frac{w_{0}}{4}\left[1-\cos \left(\frac{2 \pi x}{a}\right)\right]\left[1-\cos \left(\frac{2 \pi y}{a}\right)\right]
$$

PROBLEM 2

(a) Find the location and magnitude of the maximum in-plane stress components $\sigma_{\alpha \beta}$ in the problem of simply supported square plate loaded by a sinusoidal pressures, solved in the class.

[Hint] The stress formula for plate is:

$$
\sigma_{\alpha \beta}=\frac{z M_{\alpha \beta}}{h^{3} / 12}
$$

(b) Find the magnitude of the maximum out-of-plane average shear stress $\left(\sigma_{z x}\right)_{a v}$ and $\left(\sigma_{z y}\right)_{a v}$.
[Hint] The average stress formula for plate is:

$$
\left(\sigma_{\alpha z}\right)_{a v}=\frac{Q_{\alpha z}}{h}
$$

(c) Assuming that out-of-plane shear is distributed in a parabolic way over the plate thickness (similarly to beams), what is the maximum shear stress at the plate middle surface?

