Recitation 7: Column Buckling Solutions Using Equilibrium

Example 1

Find P_{c} for a pin-pin supported column.

Global Equilibrium:

$$
\begin{aligned}
& \curvearrowleft \\
&+\Sigma M_{0}=M(x)-P w(x)=0 \\
& M(x)=P w(x)
\end{aligned}
$$

Constitutive Law for Beams/Columns: $M=E I \kappa=-E I w^{\prime \prime}$

$$
\begin{gather*}
\Rightarrow-E I w^{\prime \prime}=P w \tag{7.1}\\
\text { or } \begin{array}{c}
w^{\prime \prime}+\frac{P}{E I} w=0 \quad \text { Governing D.E. }
\end{array} . \tag{7.2}
\end{gather*}
$$

Recall Diff Eqs
Characteristic Eqn: $\lambda^{2}+\frac{P}{E I}=0 \rightarrow \lambda= \pm i \sqrt{P / E I}$
General solution: $w=C_{1} \sin \sqrt{\frac{P}{E I}} x+C_{2} \cos \sqrt{\frac{P}{E I}} x$

Apply Boundary Conditions:
$\overline{w(0)}=0: C_{1}(0)+C_{2}(1)=0 \rightarrow C_{2}=0$
$w(L)=0: C_{1} \sin \sqrt{\frac{P}{E I}} L=0 \rightarrow$ either $C_{1}=0$ (trivial soln.)

$$
\text { or } \sqrt{\frac{P}{E I}} L=n \pi
$$

$\Rightarrow \frac{P}{E I} L^{2}=n^{2} \pi^{2} \rightarrow P=\frac{n^{2} \pi^{2} E I}{L^{2}}$
P is minimum when $n=1 \Rightarrow P_{\mathrm{C}}=\frac{\pi^{2} E I}{L^{2}}$

Note: Buckling solutions do $N O T$ give us the deflection amplitude $\left(C_{1}\right)$. The calculated P_{C} could result in any amplitude.

Different mode shapes

Example 2:

Find P_{C} for a clamped-clamped column.

$\underline{\text { Different mode shapes }}$
$\underline{\text { Local equilibrium: }} E I \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}+P \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}=0$
Characteristic eqn: $\lambda^{4}+\frac{P}{E I} \lambda^{2}=0 \rightarrow \lambda_{1}=0$

$$
\begin{aligned}
\lambda_{2} & =0 \\
\lambda_{3} & =i \sqrt{\frac{P}{E I}} \\
\lambda_{3} & =-i \sqrt{\frac{P}{E I}}
\end{aligned}
$$

General solution: $w(x)=C_{1} \sin \sqrt{\frac{P}{E I}} x+C_{2} \cos \sqrt{\frac{P}{E I}} x+C_{3} x+C_{4}$
then $w^{\prime}(x)=C_{1} \sqrt{\frac{P}{E I}} \cos \sqrt{\frac{P}{E I}} x-C_{2} \sqrt{\frac{P}{E I}} \sin \sqrt{\frac{P}{E I}} x+C_{3}$
Apply BSs:
(1) $w(0)=0: C_{1}(0)+C_{2}(1)+C_{3}(0)+C_{4}=0 \rightarrow C_{2}=-C_{4}$
(2) $w^{\prime}(0)=0: C_{1} \sqrt{\frac{P}{E I}}(1)-C_{2} \sqrt{\frac{P}{E I}}(0)+C_{3}=0 \rightarrow C_{3}=-C_{1} \sqrt{\frac{P}{E I}}$
(3) $w(L)=0: C_{1} \sin \sqrt{\frac{P}{E I}} L+C_{2} \cos \sqrt{\frac{P}{E I}} L-C_{1} \sqrt{\frac{P}{E I}} L-C_{2}=0$
(4) $w^{\prime}(L)=0: C_{1} \sqrt{\frac{P}{E I}} \cos \sqrt{\frac{P}{E I}} L-C_{2} \sqrt{\frac{P}{E I}} \sin \sqrt{\frac{P}{E I}} L-C_{1} \sqrt{\frac{P}{E I}}=0$

Matrix form of eons (3) and (4):

$$
\left[\begin{array}{cc}
\sin \sqrt{\frac{P}{E I}} L-\sqrt{\frac{P}{E I}} L & \cos \sqrt{\frac{P}{E I}} L-1 \tag{7.3}\\
\sqrt{\frac{P}{E I}}\left(\cos \sqrt{\frac{P}{E I}} L-1\right) & -\sqrt{\frac{P}{E I}} \sin \sqrt{\frac{P}{E I}} L
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Non-trivial solution only if $\operatorname{det}[\ldots]=0$

$$
\begin{array}{r}
(\sin \omega L-\omega L)(-\omega \sin \omega L)-\omega(\cos \omega L-1)(\cos \omega L-1)=0 \\
-\omega \sin ^{2} \omega L+\omega^{2} L \sin \omega L-\omega \cos ^{2} \omega L+2 \omega \cos \omega L-\omega=0 \\
-2 \omega+\omega^{2} L \sin \omega L+2 \omega \cos \omega L=0 \\
\omega(-2+\omega L \sin \omega L+2 \cos \omega L)=0 \\
\Rightarrow \quad \omega=0 \quad \text { or } \quad(-2+\omega L \sin \omega L+2 \cos \omega L)=0
\end{array}
$$

Then

$$
\begin{gather*}
-2+\omega L 2 \sin \left(\frac{\omega L}{2}\right) \cos \left(\frac{\omega L}{2}\right)+2\left[1-2 \sin ^{2}\left(\frac{\omega L}{2}\right)\right]=0 \tag{7.7}\\
\sin \left(\frac{\omega L}{2}\right)\left[2 \omega L \cos \left(\frac{\omega L}{2}\right)-4 \sin \left(\frac{\omega L}{2}\right)\right]=0 \tag{7.8}\\
\sin \left(\frac{\omega L}{2}\right)=0 \rightarrow \frac{\omega L}{2}=n \pi \rightarrow \sqrt{\frac{\omega L}{2}}=\frac{2 n \pi}{L} \tag{7.9}\\
P_{\mathrm{C}}=\frac{4 n^{2} \pi^{2} E I}{L^{2}} \tag{7.10}
\end{gather*}
$$

Alternative Method

Glabal equilibrium, with unknown M_{R} :

$$
\begin{align*}
& \curvearrowleft \tag{7.11}\\
&+ M_{0}: \tag{7.12}\\
&-M_{\mathrm{R}}+M(x)-P w(x)=0 \\
& M(x)=M_{\mathrm{R}}+P w(x)=-E I w^{\prime \prime}
\end{align*}
$$

$$
\text { So } w^{\prime \prime}+\frac{P}{E I} w=-\frac{M_{\mathrm{R}}}{E I} \text { Inhomogeneous O.D.E. }
$$

Solution: $w=w_{\mathrm{h}}+w_{\mathrm{p}}$
homogeneous particular
$w_{\mathrm{h}}=C_{1} \sin \sqrt{\frac{P}{E I}} x+C_{2} \cos \sqrt{\frac{P}{E I}} x$ (as before in example 1)
$w_{\mathrm{p}}=C_{3}$, where $C_{3}=-\frac{M_{\mathrm{R}}}{P} \leftarrow($ Not necessarily constant - may be a function of $\omega)$

$$
\left(\sqrt{\frac{P}{E I}}=\omega\right)
$$

Then $w(x)=C_{1} \sin \sqrt{\frac{P}{E I}} x+C_{2} \cos \sqrt{\frac{P}{E I}} x-\frac{M_{\mathrm{R}}}{P}$

$$
w^{\prime}=C_{1} \omega \cos \omega x-C_{2} \omega \sin \omega x
$$

Apply BCs:

$$
\begin{aligned}
& w(0)=0: C_{2}=\frac{M_{\mathrm{R}}}{P} \\
& w^{\prime}(0)=0: C_{1} w=0 \rightarrow C_{1}=0 \\
& w(L)=0: \frac{M_{\mathrm{R}}}{P} \cos \omega L=\frac{M_{\mathrm{R}}}{P} \rightarrow \cos \omega L=1 \rightarrow \omega L=2 n \pi
\end{aligned}
$$

$$
\omega=\frac{2 n \pi}{L} \quad \text { As Before }
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

