Recitation 1: Vector/Tensor Analysis and Review of Static Equilibrium

1.1 Scalars, Vectors, and Tensors

1.1.1 Scalars

Physical quantities that are described by a single real number are called scalars.
Examples: density, energy, temperature, pressure

1.1.2 Vectors

Vectors are physical quantities that are completely characterized by a magnitude and direction.

Examples: force, velocity, displacement

1.1.3 Tensors

A tensor can be thought of as a linear operator that acts on one vector to generate a new vector.

Example: Cauchy's stress theorem

$$
\begin{equation*}
\boldsymbol{t}=\sigma \boldsymbol{n} \tag{1.1}
\end{equation*}
$$

where \boldsymbol{t} is the teaction vector, \boldsymbol{n} is the normal vector, and σ is the stress tensor.

1.1.4 Indicial Notation

Range Convention

Wherever a subscript appears only once in a term (called a free or live index), the subscript takes on all the values of the coordinate space (i.e., $1,2,3$ for a 3 D space).

Examples:

$$
\begin{equation*}
A_{i}=\left(A_{1}, A_{2}, A_{3}\right) \quad(3 \mathrm{D} \text { vector }) \tag{1.2}
\end{equation*}
$$

$$
\sigma_{i j}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \tag{1.3}\\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right] \quad(3 \mathrm{X} 3 \text { tensor })
$$

Typically, indices i, j represent 3D space. Indices α, β represent 2D space (e.g., plane strain or plane stress). A scalar quantity has 0 free indices, a vector has 1 free index, and a tensor has 2 (or more) free indices.

Summation Convention (Einstein Notation)

If an index appears twice in a term (called a dummy index), summation over the range of the index is implied.

Examples:

$$
\begin{align*}
a_{i i} & =a_{11}+a_{22}+a_{33} \tag{1.4}\\
a_{i} a_{i} & =a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \tag{1.5}
\end{align*}
$$

Comma convention

A subscript comma followed by an index i indicates partial differentiation with respect to each coordinate x_{i}. The summation and range conventions apply to indices following the comma as well.

Examples:

$$
\begin{equation*}
u_{i, i}=\frac{\partial u_{1}}{\partial z_{1}}+\frac{\partial u_{2}}{\partial z_{2}}+\frac{\partial u_{3}}{\partial z_{3}} \tag{1.6}
\end{equation*}
$$

$\underline{\text { Kronecker Delta, } \delta_{i j}}$

$$
\delta_{i j}=\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j} \equiv\left\{\begin{array}{l}
1, \text { if } i=j \tag{1.7}\\
0, \text { if } i \neq j
\end{array}\right.
$$

Examples:

$$
\begin{align*}
u_{i} \delta_{i j} & =u_{j} \tag{1.8}\\
\delta_{i j} A_{j k} & =A_{i k} \tag{1.9}
\end{align*}
$$

Permutation Symbol, $\varepsilon_{i j k}$

$$
\begin{align*}
& \varepsilon_{123}=\varepsilon_{231}=\varepsilon_{312}=1 \tag{1.10}\\
& \varepsilon_{132}=\varepsilon_{213}=\varepsilon_{321}=-1 \tag{1.11}
\end{align*}
$$

$$
\begin{equation*}
\varepsilon_{i n k}=0 \text { if there is a repeated index } \tag{1.12}
\end{equation*}
$$

Scalar Products (dot products)

The scalar (dot) product of two vectors is defined by:

$$
\begin{equation*}
\boldsymbol{u} \cdot \boldsymbol{v}=|\boldsymbol{u} \| \boldsymbol{v}| \cos (\boldsymbol{u}, \boldsymbol{v}) \tag{1.13}
\end{equation*}
$$

where $(\boldsymbol{u}, \boldsymbol{v})$ is the angle between the two vectors.

$$
\begin{equation*}
\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}=u_{i} v_{i} \tag{1.14}
\end{equation*}
$$

Examples:

$$
\begin{equation*}
\text { Work, } W=\boldsymbol{F} \cdot \boldsymbol{u} \tag{1.15}
\end{equation*}
$$

Vector Products (cross products)

The vector (cross) product of two vectors is defined by:

$$
\begin{equation*}
\boldsymbol{w}=\boldsymbol{u} \times \boldsymbol{v} \tag{1.16}
\end{equation*}
$$

where \boldsymbol{w} is a new vector and orthogonal to \boldsymbol{u} and \boldsymbol{v}. Its magnitude is given by

$$
\begin{equation*}
|\boldsymbol{w}|=|\boldsymbol{u}||\boldsymbol{v}| \sin (\boldsymbol{u}, \boldsymbol{v}) \tag{1.17}
\end{equation*}
$$

Examples:

$$
\begin{equation*}
\text { Moment, } \boldsymbol{M}=\boldsymbol{r} \times \boldsymbol{F} \tag{1.18}
\end{equation*}
$$

The cross product can be calculated as

$$
\boldsymbol{u} \times \boldsymbol{v}=\operatorname{det}\left[\begin{array}{lll}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \tag{1.19}\\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right]
$$

In terms of the permutation symbol, the cross product can be written as

$$
\begin{equation*}
\boldsymbol{u} \times \boldsymbol{v}=\varepsilon_{i j k} u_{j} v_{k} \tag{1.20}
\end{equation*}
$$

Example putting it all together:

1. Gradient of a scalar:

$$
\begin{equation*}
\nabla \phi=\frac{\partial \phi}{\partial x} \boldsymbol{i}+\frac{\partial \phi}{\partial y} \boldsymbol{j}+\frac{\partial \phi}{\partial z} \boldsymbol{k}=\phi_{, i} \tag{1.21}
\end{equation*}
$$

2. Divergence of a vector:

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}=v_{i, i} \tag{1.22}
\end{equation*}
$$

3. Hooke's Law:

$$
\begin{equation*}
\sigma_{i j}=\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j} \tag{1.23}
\end{equation*}
$$

How many equations does this represent?

1.2 Static Equilibrium (of rigid structures)

1.2.1 Framework for Structural Analysis

Structural actions (i.e., loads):

- Tension
- Compression
- Bending (combined tension + compression)
- Shear
- Torsion

Structural elements:

- Rods
- Beams
- Columns
- Plates
- Shells

Structural systems:

- Buildings
- Bridges
- Ships, etc.

What influences how a structural behaves?

1.2.2 Static Equilibrium

$$
\begin{gather*}
\Sigma \boldsymbol{F}=0 \tag{1.24}\\
\Sigma \boldsymbol{M}=0 \tag{1.25}
\end{gather*}
$$

Example: Find the minimum required cross-sectional area of each member to avoid yield.

MIT OpenCourseWare
http://ocw.mit.edu

2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

